1
|
Löffler T, Savan A, Meyer H, Meischein M, Strotkötter V, Ludwig A, Schuhmann W. Design von komplexen Mischkristall‐Elektrokatalysatoren auf Basis der Korrelation von Konfiguration, Verteilungsmustern der Adsorptionsenergie und Aktivitätskurven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias Löffler
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| | - Alan Savan
- Lehrstuhl für neue Materialien und Grenzflächen, Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| | - Hajo Meyer
- Lehrstuhl für neue Materialien und Grenzflächen, Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| | - Michael Meischein
- Lehrstuhl für neue Materialien und Grenzflächen, Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| | - Valerie Strotkötter
- Lehrstuhl für neue Materialien und Grenzflächen, Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| | - Alfred Ludwig
- Lehrstuhl für neue Materialien und Grenzflächen, Institut für Werkstoffe Fakultät für Maschinenbau Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| | - Wolfgang Schuhmann
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Deutschland
| |
Collapse
|
2
|
Löffler T, Savan A, Meyer H, Meischein M, Strotkötter V, Ludwig A, Schuhmann W. Design of Complex Solid-Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity Curves. Angew Chem Int Ed Engl 2020; 59:5844-5850. [PMID: 31867829 PMCID: PMC7155130 DOI: 10.1002/anie.201914666] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Indexed: 11/09/2022]
Abstract
Complex solid‐solution electrocatalysts (also referred to as high‐entropy alloy) are gaining increasing interest owing to their promising properties which were only recently discovered. With the capability of forming complex single‐phase solid solutions from five or more constituents, they offer unique capabilities of fine‐tuning adsorption energies. However, the elemental complexity within the crystal structure and its effect on electrocatalytic properties is poorly understood. We discuss how addition or replacement of elements affect the adsorption energy distribution pattern and how this impacts the shape and activity of catalytic response curves. We highlight the implications of these conceptual findings on improved screening of new catalyst configurations and illustrate this strategy based on the discovery and experimental evaluation of several highly active complex solid solution nanoparticle catalysts for the oxygen reduction reaction in alkaline media.
Collapse
Affiliation(s)
- Tobias Löffler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Hajo Meyer
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Michael Meischein
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Valerie Strotkötter
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
3
|
Jusys Z, Behm RJ. The Effect of Anions and pH on the Activity and Selectivity of an Annealed Polycrystalline Au Film Electrode in the Oxygen Reduction Reaction-Revisited. Chemphyschem 2019; 20:3276-3288. [PMID: 31705610 PMCID: PMC6973112 DOI: 10.1002/cphc.201900960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Indexed: 01/06/2023]
Abstract
Aiming at a better understanding of correlations between the activity and selectivity of Au electrodes in the oxygen reduction reaction (ORR) under controlled transport conditions, we have investigated this reaction by combined electrochemical and in situ FTIR measurements, performed in a flow cell set‐up in an attenuated total reflection (ATR) configuration in acid and alkaline electrolytes. The formation of incomplete reduction products (hydrogen peroxyde/peroxyls) was detected by a collector electrode, the onset of OHad formation was probed by bulk CO oxidation. Using an electroless‐deposited, annealed Au film on a Si prism as working electrode and three different electrolytes for comparison (sulfuric acid, perchloric acid, sodium hydroxide solution), we could derive detailed information on the anion adsorption behavior, and could correlate this with the ORR characteristics. The data reveal pronounced effects of the anions and the pH on the ORR characteristics, indicated e. g., by a grossly different activity and selectivity for the 4‐electron pathway to water/hydroxyls, with the onset ranging from ca. 1.0 V in alkaline electrolyte to 0.6 V in sulfuric acid electrolyte, and the selectivity for the 4‐electron pathway ranging from 100 % (alkaline electrolyte, low overpotentials) to 40 % (acidic electrolytes, alkaline electrolyte at high overpotentials). In contrast, the effect of the ORR on the anion adsorption characteristics is small. Anion effects as well as correlations between anion adsorption and ORR are discussed.
Collapse
Affiliation(s)
- Zenonas Jusys
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
4
|
Li Y, Qiao Z, Cao Y, Wang H, Liang H, Yu H, Peng F. Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbon-Based Catalysts Evidenced by Theoretical Calculations. CHEMSUSCHEM 2019; 12:1133-1138. [PMID: 30536883 DOI: 10.1002/cssc.201802601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 05/09/2023]
Abstract
Superoxide decay behavior is evaluated by contrastive potential energy surface analyses from theoretical calculations. The presence of carbon surfaces enhances the superoxide decay through disproportionation instead of electroreduction, which is a non-electrochemical reaction that impedes the increase in energy efficiency for relevant energy conversion applications. Nitrogen doping of carbon effectively retards the disproportionation by influencing the oxygen stretching vibration and changing the proton-coupled electron transfer trend.
Collapse
Affiliation(s)
- Yuhang Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yonghai Cao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Feng Peng
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Novartis Early Career Award: K. L. Hull / Leipziger Universitätsmedaille: E. Hey‐Hawkins / Karl‐Ziegler‐Gastprofessur: K. Nozaki / Clara Immerwahr Award: M. Escudero‐Escribano / Marion Milligan Mason Awards: V. E. Ferry, S. K. Fullerton, L. C. Hsiao, H. J. Kulik, C. S. Schindler. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Novartis Early Career Award: K. L. Hull / Leipziger Universitätsmedaille: E. Hey‐Hawkins / Karl Ziegler Guest Professorship: K. Nozaki / Clara Immerwahr Award: M. Escudero‐Escribano / Marion Milligan Mason Awards: V. E. Ferry, S. K. Fullerton, L. C. Hsiao, H. J. Kulik, C. S. Schindler. Angew Chem Int Ed Engl 2019; 58:2940-2941. [DOI: 10.1002/anie.201900118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Escudero-Escribano M, Pedersen AF, Ulrikkeholm ET, Jensen KD, Hansen MH, Rossmeisl J, Stephens IEL, Chorkendorff I. Active-Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence X-Ray Diffraction Study. Chemistry 2018; 24:12280-12290. [DOI: 10.1002/chem.201801587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 11/11/2022]
Affiliation(s)
- María Escudero-Escribano
- Department of Chemistry, Nano-Science Center; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Ø Denmark
- Department of Physics, Surface Physics and Catalysis; Technical University of Denmark; Fysikvej, Building 312 2800 Kgs. Lyngby Denmark
- Department of Chemical Engineering; SUNCAT Center for Interface Science and Catalysis; Stanford University; 443 Via Ortega Stanford California 94305 USA
| | - Anders F. Pedersen
- Department of Physics, Surface Physics and Catalysis; Technical University of Denmark; Fysikvej, Building 312 2800 Kgs. Lyngby Denmark
| | - Elisabeth T. Ulrikkeholm
- Department of Physics, Surface Physics and Catalysis; Technical University of Denmark; Fysikvej, Building 312 2800 Kgs. Lyngby Denmark
| | - Kim D. Jensen
- Department of Chemistry, Nano-Science Center; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Ø Denmark
- Department of Physics, Surface Physics and Catalysis; Technical University of Denmark; Fysikvej, Building 312 2800 Kgs. Lyngby Denmark
| | - Martin H. Hansen
- Department of Chemical Engineering; SUNCAT Center for Interface Science and Catalysis; Stanford University; 443 Via Ortega Stanford California 94305 USA
| | - Jan Rossmeisl
- Department of Chemistry, Nano-Science Center; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Ifan E. L. Stephens
- Department of Physics, Surface Physics and Catalysis; Technical University of Denmark; Fysikvej, Building 312 2800 Kgs. Lyngby Denmark
- Department of Materials; Imperial College London, 2.03b, Royal School of Mines; Prince Consort Rd London SW7 2AZ England UK
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis; Technical University of Denmark; Fysikvej, Building 312 2800 Kgs. Lyngby Denmark
| |
Collapse
|