1
|
Tong L, Lin Y, Kou X, Shen Y, Shen Y, Huang S, Zhu F, Chen G, Ouyang G. Pore-Environment-Dependent Photoresponsive Oxidase-Like Activity in Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202218661. [PMID: 36719177 DOI: 10.1002/anie.202218661] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes' activity in addition to the active center.
Collapse
Affiliation(s)
- Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuhong Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yujian Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Conformation of the Intermediates in the Reaction Catalyzed by Protoporphyrinogen Oxidase: An In Silico Analysis. Int J Mol Sci 2020; 21:ijms21249495. [PMID: 33327448 PMCID: PMC7764921 DOI: 10.3390/ijms21249495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022] Open
Abstract
Protoporphyrinogen oxidase (PPO) is a critical enzyme across life as the last common step in the synthesis of many metalloporphyrins. The reaction mechanism of PPO was assessed in silico and the unstructured loop near the binding pocket was investigated. The substrate, intermediates, and product were docked in the catalytic domain of PPO using a modified Autodock method, introducing flexibility in the macrocycles. Sixteen PPO protein sequences across phyla were aligned and analyzed with Phyre2 and ProteinPredict to study the unstructured loop from residue 204–210 in the H. sapiens structure. Docking of the substrate, intermediates, and product all resulted in negative binding energies, though the substrate had a lower energy than the others by 40%. The α-H of C10 was found to be 1.4 angstroms closer to FAD than the β-H, explaining previous reports of the reaction occurring on the meso face of the substrate. A lack of homology in sequence or length in the unstructured loop indicates a lack of function for the protein reaction. This docking study supports a reaction mechanism proposed previously whereby all hydride abstractions occur on the C10 of the tetrapyrrole followed by tautomeric rearrangement to prepare the intermediate for the next reaction.
Collapse
|
4
|
Schmermund L, Bierbaumer S, Schein VK, Winkler CK, Kara S, Kroutil W. Extending the Library of Light‐Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem 2020. [DOI: 10.1002/cctc.202000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Viktor K. Schein
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christoph K. Winkler
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Wolfgang Kroutil
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
5
|
Erdei AL, Kósa A, Böddi B. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls. PHOTOSYNTHESIS RESEARCH 2019; 140:93-102. [PMID: 30225812 DOI: 10.1007/s11120-018-0584-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The effects of distinct UV-A and UV-B radiations were studied on etiolated pea (Pisum sativum L.) epicotyls. Emission spectra of the native protochlorophyll and protochlorophyllide forms were measured when epicotyls were excited with 360 or 300 nm light. The UV-A (360 nm) excited mainly the non-enzyme-bound monomers of protochlorophyll and protochlorophyllide and the UV-B (300 nm) excited preferentially the flash-photoactive protochlorophyllide complexes. These latter complexes converted into short- and long-wavelength chlorophyllide forms at 10-s illumination with both wavelength irradiations. As the spectral changes were very small, the effects of longer illumination periods were studied. Room temperature fluorescence emission spectra were measured from the same epicotyl spots before and after irradiation with various wavelengths between 280 and 360 nm for 15 min and the "illuminated" minus "dark" difference spectra were calculated. Both the UV-A and the UV-B irradiations caused photoreduction of protochlorophyllide into chlorophyllide. At 10 µmol photons m-2 s-1, the photoreduction rates were similar, however, at 60 µmol photons m-2 s-1, the UV-B irradiation was more effective in inducing chlorophyllide formation than the UV-A. The action spectra of protochlorophyllide plus protochlorophyll loss and chlorophyllide production showed that the radiation around 290 nm was the most effective in provoking protochlorophyllide photoreduction and the UV light above 320 nm caused strong bleaching. These results show that the effect of the UV radiation should be considered when discussing the protochlorophyllide-chlorophyllide photoreduction during germination and as a part of the regeneration of the photosynthetic apparatus proceeding in the daily run of photosynthesis.
Collapse
Affiliation(s)
- Anna Laura Erdei
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Faculty of Science, Institute of Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, 1117, Hungary.
| |
Collapse
|
6
|
Gholami S, Nenov A, Rivalta I, Bocola M, Bordbar AK, Schwaneberg U, Davari MD, Garavelli M. Theoretical Model of the Protochlorophyllide Oxidoreductase from a Hierarchy of Protocols. J Phys Chem B 2018; 122:7668-7681. [PMID: 29996651 DOI: 10.1021/acs.jpcb.8b04231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme protochlorophyllide oxidoreductase (LPOR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), a crucial step in chlorophyll biosynthesis. Molecular understanding of the photocatalytic mechanism of LPOR is essential for harnessing light energy to mediate enzymatic reactions. The absence of X-ray crystal structure has promoted the development of LPOR homology models that lack a catalytically competent active site and could not explain the variously reported spectroscopic evidence, including time-resolved optical spectroscopy data. We have refined previous structural models to account for the catalytic active site and the characteristic experimental spectral features of Pchlide binding, including the 26 cm-1 red shift of the C13(1) carbonyl stretch vibration in the mid-infrared (IR) and the 12 nm red shift of the Q x electronic band. A hierarchy of theoretical methods, including homology modeling, molecular dynamics simulations, hybrid quantum mechanics [(TD-)DFT]/molecular mechanics [AMBER] calculations, and computational vibrational and electronic spectroscopies, have been combined in an iterative protocol to reproduce experimental evidence and to predict ultrafast transient IR spectroscopic fingerprints associated with the catalytic process. The successful application to the LPOR enzyme indicates that the presented hierarchical protocol provides a general workflow to protein structure refinement.
Collapse
Affiliation(s)
- Samira Gholami
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran.,Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ivan Rivalta
- Université de Lyon , École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 , Lyon , France
| | - Marco Bocola
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - A Khalegh Bordbar
- Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , 52074 Aachen , Germany
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|