1
|
Yang P, Luo T, Yang S, Zhang A, Tang Y, Chen L, Wang J, Zhao Y, Zhong Z, Li X, Han Z, Zhang Y, Tang Y, Ma J, Jin L, Long K, Li M, Lu L. Identification of Olfactory Receptors Responding to Androstenone and the Key Structure Determinant in Domestic Pig. Curr Issues Mol Biol 2024; 47:13. [PMID: 39852128 PMCID: PMC11763519 DOI: 10.3390/cimb47010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
Olfactory receptors (ORs) are members of the transmembrane G protein-coupled receptor superfamily, playing a crucial role in odor recognition, which further mediates crucial biological processes in mammals. In sows, androstenone can trigger sexual behaviors through olfaction, but the underlying mechanism remains to be explored. To efficiently and accurately screen pig olfactory receptors responding to androstenone and the key structure determinant, we adapted the high-throughput RNA-seq strategy to screen the altered genes upon androstenone treatment in the olfactory epithelium of pigs, yielding 1397 downregulated genes. Of which, 15 OR genes and 49 OR-like genes were candidate androstenone-responsive genes, and 5 ORs (OR2D2, OR8D1, OR8D2, OR10Z1 and OR7D4) were proven as responsible for androstenone-mediated olfaction in vitro. Among the five ORs, pig OR7D4 has the highest level of androstenone response. To further find the structural determinant, we performed ligand-binding cavity analysis on pig OR7D4 with androstenone, predicted seven potential structural sites and further confirmed that F178 and T203 are the key sites for recognizing androstenone. Nevertheless, the natural non-synonymous mutation M133V (rs696400829) of pig OR7D4 was proven to significantly impair the respondence to androstenone. This is the first time the ORs responding to androstenone in pigs and the key structural determinant of pig OR7D4 were identified, which highlights the significance of investigating the role of OR7D4 in pig reproduction performance in the future.
Collapse
Affiliation(s)
- Peidong Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Shuqi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Anjing Zhang
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 402460, China; (A.Z.); (L.C.); (J.W.)
| | - Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Li Chen
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 402460, China; (A.Z.); (L.C.); (J.W.)
| | - Jinyong Wang
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 402460, China; (A.Z.); (L.C.); (J.W.)
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Ziyin Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Yupei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Yue Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China; (P.Y.); (T.L.); (S.Y.); (Y.T.); (Z.Z.); (X.L.); (Z.H.); (Y.Z.); (Y.T.); (J.M.); (L.J.); (K.L.)
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 402460, China; (A.Z.); (L.C.); (J.W.)
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
| |
Collapse
|
2
|
Lalis M, Hladiš M, Khalil SA, Briand L, Fiorucci S, Topin J. M2OR: a database of olfactory receptor-odorant pairs for understanding the molecular mechanisms of olfaction. Nucleic Acids Res 2024; 52:D1370-D1379. [PMID: 37870437 PMCID: PMC10767820 DOI: 10.1093/nar/gkad886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Mammalian sense of smell is triggered by interaction between odorant molecules and a class of proteins, called olfactory receptors (ORs). These receptors, expressed at the surface of olfactory sensory neurons, encode myriad of distinct odors via a sophisticated activation pattern. However, determining the molecular recognition spectrum of ORs remains a major challenge. The Molecule to Olfactory Receptor database (M2OR, https://m2or.chemsensim.fr/) provides curated data that allows an easy exploration of the current state of the research on OR-molecule interaction. We have gathered a database of 75,050 bioassay experiments for 51 395 distinct OR-molecule pairs. Drawn from published literature and public databases, M2OR contains information about OR responses to molecules and their mixtures, receptor sequences and experimental details. Users can obtain information on the activity of a chosen molecule or a group of molecules, or search for agonists for a specific OR or a group of ORs. Advanced search allows for fine-grained queries using various metadata such as species or experimental assay system, and the database can be queried by multiple inputs via a batch search. Finally, for a given search query, users can access and download a curated aggregation of the experimental data into a binarized combinatorial code of olfaction.
Collapse
Affiliation(s)
- Maxence Lalis
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Matej Hladiš
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Samar Abi Khalil
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| | - Jérémie Topin
- Institut de Chimie de Nice, Université Côte d’Azur, UMR 7272 CNRS, 06108 Nice, France
| |
Collapse
|
3
|
Pacalon J, Audic G, Magnat J, Philip M, Golebiowski J, Moreau CJ, Topin J. Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors. Nat Commun 2023; 14:8182. [PMID: 38081900 PMCID: PMC10713630 DOI: 10.1038/s41467-023-44058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In numerous insects, the olfactory receptor family forms a unique class of heteromeric cation channels. Recent progress in resolving the odorant receptor structures offers unprecedented opportunities for deciphering their molecular mechanisms of ligand recognition. Unexpectedly, these structures in apo or ligand-bound states did not reveal the pathway taken by the ligands between the extracellular space and the deep internal cavities. By combining molecular modeling with electrophysiological recordings, we identified amino acids involved in the dynamic entry pathway and the binding of VUAA1 to Drosophila melanogaster's odorant receptor co-receptor (Orco). Our results provide evidence for the exact location of the agonist binding site and a detailed and original mechanism of ligand translocation controlled by a network of conserved residues. These findings would explain the particularly high selectivity of Orcos for their ligands.
Collapse
Affiliation(s)
- Jody Pacalon
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France
| | | | | | - Manon Philip
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jérôme Golebiowski
- Department of Brain & Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, Republic of Korea
| | | | - Jérémie Topin
- Université Côte d'Azur, Institut de Chimie de Nice UMR7272, CNRS, Nice, France.
| |
Collapse
|
4
|
Topin J, Bouysset C, Pacalon J, Kim Y, Rhyu MR, Fiorucci S, Golebiowski J. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell Mol Life Sci 2021; 78:7605-7615. [PMID: 34687318 PMCID: PMC11073308 DOI: 10.1007/s00018-021-03968-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.
Collapse
Affiliation(s)
- Jérémie Topin
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Cédric Bouysset
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Jody Pacalon
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Yiseul Kim
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Mee-Ra Rhyu
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Sébastien Fiorucci
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, 711-873, Republic of Korea
| |
Collapse
|
5
|
de March CA, Titlow WB, Sengoku T, Breheny P, Matsunami H, McClintock TS. Modulation of the combinatorial code of odorant receptor response patterns in odorant mixtures. Mol Cell Neurosci 2020; 104:103469. [PMID: 32061665 DOI: 10.1016/j.mcn.2020.103469] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The perception of odors relies on combinatorial codes consisting of odorant receptor (OR) response patterns to encode odor identity. Modulation of these patterns by odorant interactions at ORs potentially explains several olfactory phenomena: mixture suppression, unpredictable sensory outcomes, and the perception of odorant mixtures as unique objects. We determined OR response patterns to 4 odorants and 3 binary mixtures in vivo in mice, identifying 30 responsive ORs. These patterns typically had a few strongly responsive ORs and a greater number of weakly responsive ORs. ORs responsive to an odorant were often unrelated sequences distributed across several OR subfamilies. Mixture responses predicted pharmacological interactions between odorants, which were tested in vitro by heterologous expression of ORs in cultured cells, providing independent evidence confirming odorant agonists for 13 ORs and identifying both suppressive and additive effects. This included 11 instances of antagonism of ORs by an odorant, 1 instance of additive responses to a binary mixture, 1 instance of suppression of a strong agonist by a weak agonist, and the discovery of an inverse agonist for an OR. Interactions between odorants at ORs are common even when the odorants are not known to interact perceptually in humans, and in some cases interactions at mouse ORs correlate with the ability of humans to perceive an odorant in a mixture.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA.
| | - Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| |
Collapse
|