1
|
Iwabuchi S, Nomura SIM, Sato Y. Surfactant-Assisted Purification of Hydrophobic DNA Nanostructures. Chembiochem 2023; 24:e202200568. [PMID: 36470849 DOI: 10.1002/cbic.202200568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Purification of functional DNA nanostructures is an essential step in achieving intended functions because misfolded structures and the remaining free DNA strands in a solution can interact and affect their behavior. However, due to hydrophobicity-mediated aggregation, it is difficult to purify DNA nanostructures modified with hydrophobic molecules by conventional methods. Herein, we report the purification of cholesterol-modified DNA nanostructures by using a novel surfactant-assisted gel extraction. The addition of sodium cholate (SC) to the sample solution before structure folding prevented aggregation; this was confirmed by gel electrophoresis. We also found that adding sodium dodecyl sulfate (SDS) to the sample inhibited structural folding. The cholesterol-modified DNA nanostructures prepared with SC were successfully purified by gel extraction, and their ability to bind to the lipid membrane surfaces was maintained. This method will facilitate the purification of DNA nanostructures modified with hydrophobic molecules and expand their applicability in the construction of artificial cell-like systems.
Collapse
Affiliation(s)
- Shoji Iwabuchi
- Department of Robotics, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai, 980-0845, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai, 980-0845, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 kawazu, lizuka, 820-8502, Japan
| |
Collapse
|
2
|
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Construction of Liposomes Mimicking Cell Membrane Structure through Frame‐Guided Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiafang Piao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yujie Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiancheng Tian
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
3
|
Wang C, Piao J, Li Y, Tian X, Dong Y, Liu D. Construction of Liposomes Mimicking Cell Membrane Structure through Frame‐Guided Assembly. Angew Chem Int Ed Engl 2020; 59:15176-15180. [DOI: 10.1002/anie.202005334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiafang Piao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yujie Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiancheng Tian
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
4
|
Xiong Q, Xie C, Zhang Z, Liu L, Powell JT, Shen Q, Lin C. DNA Origami Post-Processing by CRISPR-Cas12a. Angew Chem Int Ed Engl 2020; 59:3956-3960. [PMID: 31883145 PMCID: PMC7101258 DOI: 10.1002/anie.201915555] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/26/2022]
Abstract
Customizable nanostructures built through the DNA-origami technique hold tremendous promise in nanomaterial fabrication and biotechnology. Despite the cutting-edge tools for DNA-origami design and preparation, it remains challenging to separate structural components of an architecture built from-thus held together by-a continuous scaffold strand, which in turn limits the modularity and function of the DNA-origami devices. To address this challenge, here we present an enzymatic method to clean up and reconfigure DNA-origami structures. We target single-stranded (ss) regions of DNA-origami structures and remove them with CRISPR-Cas12a, a hyper-active ssDNA endonuclease without sequence specificity. We demonstrate the utility of this facile, selective post-processing method on DNA structures with various geometrical and mechanical properties, realizing intricate structures and structural transformations that were previously difficult to engineer. Given the biocompatibility of Cas12a-like enzymes, this versatile tool may be programmed in the future to operate functional nanodevices in cells.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516 (USA)
| | - Longfei Liu
- Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516 (USA)
| | - John T Powell
- Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516 (USA)
| | - Qi Shen
- Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516 (USA)
| | - Chenxiang Lin
- Department of Cell Biology & Nanobiology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516 (USA)
| |
Collapse
|
5
|
Xiong Q, Xie C, Zhang Z, Liu L, Powell JT, Shen Q, Lin C. DNA Origami Post‐Processing by CRISPR‐Cas12a. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiancheng Xiong
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| | - Chun Xie
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| | - Zhao Zhang
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| | - Longfei Liu
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| | - John T Powell
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| | - Qi Shen
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| | - Chenxiang Lin
- Department of Cell Biology & Nanobiology Institute Yale University 850 West Campus Drive West Haven CT 06516 USA
| |
Collapse
|
6
|
Suzuki Y, Kawamata I, Mizuno K, Murata S. Large Deformation of a DNA‐Origami Nanoarm Induced by the Cumulative Actuation of Tension‐Adjustable Modules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuki Suzuki
- Frontier Research Institute for Interdisciplinary SciencesTohoku University 6-3 Aramaki-aza Aoba, Aoba-ku Sendai 980-8578 Japan
- Department of RoboticsGraduate School of EngineeringTohoku University 6-6-01 Aramaki-Aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Ibuki Kawamata
- Department of RoboticsGraduate School of EngineeringTohoku University 6-6-01 Aramaki-Aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Kohei Mizuno
- Department of RoboticsGraduate School of EngineeringTohoku University 6-6-01 Aramaki-Aza Aoba, Aoba-ku Sendai 980-8579 Japan
| | - Satoshi Murata
- Department of RoboticsGraduate School of EngineeringTohoku University 6-6-01 Aramaki-Aza Aoba, Aoba-ku Sendai 980-8579 Japan
| |
Collapse
|
7
|
Suzuki Y, Kawamata I, Mizuno K, Murata S. Large Deformation of a DNA-Origami Nanoarm Induced by the Cumulative Actuation of Tension-Adjustable Modules. Angew Chem Int Ed Engl 2020; 59:6230-6234. [PMID: 31944509 DOI: 10.1002/anie.201916233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 01/03/2023]
Abstract
Making use of the programmability and structural flexibility of the DNA molecule, a DNA-origami nanoarm capable of undergoing large deformation is constructed. This DNA-origami nanoarm comprised serially repeated tension-adjustable modules, the cumulative actuation of which resulted in a large deformation of the arm structure, which transformed from a linear shape into an arched shape. Combining atomic force microscopy and theoretical analyses based on the mechanics of materials, we demonstrate that the degree of deformation can be systematically controlled by merely replacing a set of strands that is required for the actuation of the module. Moreover, by employing a G-quadruplex-forming sequence for the actuation, we could achieve reversible ion-induced contraction and relaxation of the nanoarm. The adjustability and scalability of this design could enable the production of DNA nanodevices that exhibit large deformation in response to external stimuli.
Collapse
Affiliation(s)
- Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.,Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Kohei Mizuno
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
8
|
Vanuytsel S, Carniello J, Wallace MI. Artificial Signal Transduction across Membranes. Chembiochem 2019; 20:2569-2580. [DOI: 10.1002/cbic.201900254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Vanuytsel
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Joanne Carniello
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| | - Mark Ian Wallace
- Department of ChemistryKing's College London Britannia House 7 Trinity Street London SE1 1DB UK
- London Centre for Nanotechnology Strand London WC2R 2LS UK
| |
Collapse
|
9
|
Higashi SL, Shibata A, Kitamura Y, Hirosawa KM, Suzuki KGN, Matsuura K, Ikeda M. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides. Chemistry 2019; 25:11955-11962. [PMID: 31268200 DOI: 10.1002/chem.201902421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Aqueous hybrid soft nanomaterials consisting of plural supramolecular architectures with a high degree of segregation (orthogonal coexistence) and precise hierarchy at the nano- and microscales, which are reminiscent of complex biomolecular systems, have attracted increasing attention. Remarkable progress has been witnessed in the construction of DNA nanostructures obtained by rational sequence design and supramolecular nanostructures of peptide derivatives through self-assembly under aqueous conditions. However, orthogonal self-assembly of DNA nanostructures and supramolecular nanostructures of peptide derivatives in a single medium has not yet been explored in detail. In this study, DNA microspheres, which can be obtained from three single-stranded DNAs, and three different supramolecular nanostructures (helical nanofibers, straight nanoribbons, and flowerlike microaggregates) of semi-artificial glycopeptides were simultaneously constructed in a single medium by a simple thermal annealing process, which gives rise to hybrid soft nanomaterials. Fluorescence imaging with selective staining of each supramolecular nanostructure uncovered the orthogonal coexistence of these structures with only marginal impact on their morphology. Additionally, the biostimuli-responsive degradation propensity of each supramolecular architecture is retained, and this may allow the construction of active soft nanomaterials exhibiting intelligent biofunctions.
Collapse
Affiliation(s)
- Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoshiaki Kitamura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, 680-8552, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
10
|
Dong Y, Mao Y. DNA Origami as Scaffolds for Self‐Assembly of Lipids and Proteins. Chembiochem 2019; 20:2422-2431. [DOI: 10.1002/cbic.201900073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanchen Dong
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteDepartment of MicrobiologyHarvard Medical School 450 Brookline Avenue Boston MA 02215 USA
- Intel Parallel Computing Center for Structural BiologyDana-Farber Cancer Institute 450 Brookline Avenue Boston MA 02215 USA
- Present address: CAS Key Laboratory of Colloid Interfaces and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences No. 2 Zhongguancun Beiyijie Beijing 100190 P.R. China
| | - Youdong Mao
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteDepartment of MicrobiologyHarvard Medical School 450 Brookline Avenue Boston MA 02215 USA
- Intel Parallel Computing Center for Structural BiologyDana-Farber Cancer Institute 450 Brookline Avenue Boston MA 02215 USA
- State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsSchool of PhysicsCenter for Quantitative BiologyPeking University Beijing 100871 P.R. China
| |
Collapse
|