1
|
Berlanga I, Rosenkranz A. Covalent organic frameworks in tribology - A perspective. Adv Colloid Interface Sci 2024; 331:103228. [PMID: 38901060 DOI: 10.1016/j.cis.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are an emerging class of crystalline porous materials formed through covalent bonds between organic building blocks. COFs uniquely combine a large surface area, an excellent stability, numerous abundant active sites, and tunable functionalities, thus making them highly attractive for numerous applications. Especially, their abundant active sites and weak interlayer interaction make these materials promising candidates for tribological research. Recently, notable attention has been paid to COFs as lubricant additives due to their excellent tribological performance. Our review aims at critically summarizing the state-of-art developments of 2D COFs in tribology. We discuss their structural and functional design principles, as well as synthetic strategies with a special focus on tribology. The generation of COF thin films is also assessed in detail, which can alleviate their most challenging drawbacks for this application. Subsequently, we analyze the existing state-of-the-art regarding the usage of COFs as lubricant additives, self-lubrication composite coatings, and solid lubricants at the nanoscale. Finally, critical challenges and future trends of 2D COFs in tribology are outlined to initiate and boost new research activities in this exciting field.
Collapse
Affiliation(s)
- Isadora Berlanga
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile.
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile.
| |
Collapse
|
2
|
Covalent organic framework as fluorescent turn-on/off sensor and an account of operating sensing mechanism. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Zhao X, Pang H, Huang D, Liu G, Hu J, Xiang Y. Construction of Ultrastable Nonsubstituted Quinoline‐Bridged Covalent Organic Frameworks via Rhodium‐Catalyzed Dehydrogenative Annulation. Angew Chem Int Ed Engl 2022; 61:e202208833. [DOI: 10.1002/anie.202208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaodong Zhao
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Huaji Pang
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Dekang Huang
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Gang Liu
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Jianxiang Hu
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Yonggang Xiang
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| |
Collapse
|
4
|
Zhao X, Pang H, Huang D, Liu G, Hu J, Xiang Y. Construction of Ultrastable Nonsubstituted Quinoline‐Bridged Covalent Organic Frameworks via Rhodium‐Catalyzed Dehydrogenative Annulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaodong Zhao
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Huaji Pang
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Dekang Huang
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Gang Liu
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Jianxiang Hu
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Yonggang Xiang
- College of Science Huazhong Agricultural University Shizishan Avenue 430070 Wuhan CHINA
| |
Collapse
|
5
|
Geng TM, Wang K, Zhou XH, Dong XQ. Nanoarchitectonics of bipyrazole-based porous organic polymer for iodine absorption and fluorescence sensing picric acid and formation of liquid complex of its (poly)iodide ions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Guo Z, Jiang H, Wu H, Zhang L, Song S, Chen Y, Zheng C, Ren Y, Zhao R, Li Y, Yin Y, Guiver MD, Jiang Z. Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Engines, School of Mechanical Engineering Tianjin University Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 China
| | - Leilang Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yu Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- School of Environmental Science and Engineering Tianjin University Tianjin 300072 China
| | - Chenyang Zheng
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Engines, School of Mechanical Engineering Tianjin University Tianjin 300072 China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Rui Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yonghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yan Yin
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Engines, School of Mechanical Engineering Tianjin University Tianjin 300072 China
| | - Michael D. Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Engines, School of Mechanical Engineering Tianjin University Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 (China)
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
7
|
Guo Z, Jiang H, Wu H, Zhang L, Song S, Chen Y, Zheng C, Ren Y, Zhao R, Li Y, Yin Y, Guiver MD, Jiang Z. Oil-Water-Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angew Chem Int Ed Engl 2021; 60:27078-27085. [PMID: 34619005 DOI: 10.1002/anie.202112271] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/05/2022]
Abstract
Ionic covalent organic framework nanosheets (iCOFNs) with long-range ordered and mono-dispersed ionic groups hold great potential in many advanced applications. Considering the inherent drawbacks of oil-water biphase method, herein, we explore an oil-water-oil triphase method based on phase engineering strategy for the bottom-up synthesis of iCOFNs. The middle water phase serves as a confined reaction region, and the two oil phases are reservoirs for storing and supplying monomers to the water phase. A large aqueous space and low monomer concentration lead to the anisotropic gradual growth of iCOFNs into few-layer thickness, large lateral size, and high crystallinity. Notably, the resulting three cationic and anionic iCOFNs exhibit ultra-high aspect ratios of up to 20,000. We further demonstrate their application potential by processing into ultrathin defect-free COF membranes for efficient biogas separation. Our triphase method may offer an alternative platform technology for the synthesis and innovative applications of iCOFNs.
Collapse
Affiliation(s)
- Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, China
| | - Leilang Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yu Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chenyang Zheng
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Rui Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yonghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yan Yin
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
8
|
Wen Y, Wang G, Jiang X, Ye X, Li W, Xu G. A Covalent Organic–Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yingyi Wen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) 19A Yuquan Road Beijing 100049 P. R. China
| | - Guan‐E Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaoming Jiang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaoliang Ye
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Wenhua Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences (CAS) 115 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) 19A Yuquan Road Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
9
|
Wen Y, Wang GE, Jiang X, Ye X, Li W, Xu G. A Covalent Organic-Inorganic Hybrid Superlattice Covered with Organic Functional Groups for Highly Sensitive and Selective Gas Sensing. Angew Chem Int Ed Engl 2021; 60:19710-19714. [PMID: 34240809 DOI: 10.1002/anie.202107185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 01/05/2023]
Abstract
Organic-inorganic hybrid superlattices (OIHSLs) hold attractive physical and chemical properties, while the construction of single-crystal covalent OIHSLs has not been achieved. Herein a coordination assembly strategy was proposed to create a single-crystal covalent OIHSL PbBDT (BDT=1,4-benzenedithiolate), where layered [PbS2 ] sublattice covalently connects with benzene sublattice. The covalent bonding offers better thermo-/chemi-stability, inter-sublattice electron transport, and unique organic-group-functionalized surface, which may enable better performances in chemical applications than non-covalent OIHSL. These features endow PbBDT with the highest sensitivity, the lowest detection limit and excellent selectivity towards NO2 at room temperature among all chemiresistive gas-sensing materials with reported response time less than 2 min without the need of light assistance.
Collapse
Affiliation(s)
- Yingyi Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoliang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Wenhua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 115 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences (UCAS), 19A Yuquan Road, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
10
|
Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen JS, Zhang F. Synthesis of Ionic Vinylene-Linked Covalent Organic Frameworks through Quaternization-Activated Knoevenagel Condensation. Angew Chem Int Ed Engl 2021; 60:13614-13620. [PMID: 33844881 DOI: 10.1002/anie.202104375] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/25/2022]
Abstract
We developed a simple approach to synthesizing ionic vinylene-linked two-dimensional covalent organic frameworks (COFs) through a quaternization-promoted Knoevenagel condensation at three aromatic methyl carbon atoms of N-ethyl-2,4,6-trimethylpyridinium halide with multitopic aromatic aldehyde derivatives. The resultant COFs exhibited a honeycomb-like structure with high crystallinity and surface areas as large as 1343 m2 g-1 . The regular shape-persistent nanochannels and the positively charged polymeric frameworks allowed the COFs to be uniformly composited with linear polyethylene oxide and lithium salt, displaying ionic conductivity as high as 2.72×10-3 S cm-1 .
Collapse
Affiliation(s)
- Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Biao Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen J, Zhang F. Synthesis of Ionic Vinylene‐Linked Covalent Organic Frameworks through Quaternization‐Activated Knoevenagel Condensation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fancheng Meng
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Zuobang Sun
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Biao Jiang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
12
|
Hao Q, Li ZJ, Bai B, Zhang X, Zhong YW, Wan LJ, Wang D. A Covalent Organic Framework Film for Three-State Near-Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021; 60:12498-12503. [PMID: 33756014 DOI: 10.1002/anie.202100870] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Indexed: 11/10/2022]
Abstract
A Kagome structure covalent organic framework (COF) film with three-state NIR electrochromic properties was designed and synthesized. The COFTPDA-PDA film is composed of hexagonal nanosheets with high crystallinity and has three reversible color states at different applied potentials. It has high absorption spectra changes in the NIR region, ascribed to the strong intervalence charge transfer (IVCT) interaction of the Class III mixed-valence systems of the conjugated triphenylamine species. The film showed sub-second response time (1.3 s for coloring and 0.7 s for bleaching at 1050 nm) and long retention time in the NIR region. COFTPDA-PDA film shows superior NIR electrochromic properties in term of response time and stability, attributed to the highly ordered porous structure and the π-π stacking structure of the COFTPDA-PDA architecture. The COFTPDA-PDA film was applied in mimicking a flip-flop logic gate with optical memory function.
Collapse
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Juan Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Hao Q, Li Z, Bai B, Zhang X, Zhong Y, Wan L, Wang D. A Covalent Organic Framework Film for Three‐State Near‐Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Juan Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
14
|
Geng TM, Liu M, Hu C, Zhu H. The synthesis of conjugated microporous polymers via nucleophilic substitution of hydroquinone with cyanuric chloride and hexachlorocyclotriphosphazene for sensing to 2,4-dinitrophenol and 2,4,6-trinitrophenol. NEW J CHEM 2021. [DOI: 10.1039/d0nj06099b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydroquinone is an electron-rich connector similar in structure to DNP and TNP. Two hydroquinone-based conjugated microporous polymers have excellent fluorescence sensing performance for DNP and TNP, respectively.
Collapse
Affiliation(s)
- Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- P. R. China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- P. R. China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- P. R. China
| | - Hai Zhu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- P. R. China
| |
Collapse
|
15
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
16
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
17
|
Singh H, Devi M, Jena N, Iqbal MM, Nailwal Y, De Sarkar A, Pal SK. Proton-Triggered Fluorescence Switching in Self-Exfoliated Ionic Covalent Organic Nanosheets for Applications in Selective Detection of Anions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13248-13255. [PMID: 32046492 DOI: 10.1021/acsami.9b20743] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The exfoliation of covalent organic frameworks into covalent organic nanosheets (CONs) not only helps to reduce fluorescence turn-off phenomena but also provides well-exposed active sites for fast response and recovery for various applications. The present work is an example of rational designing of a structure constructed by condensing triaminoguanidinium chloride (TGCl), an intrinsic ionic linker, with a fluorophore, 2, 5-dimethoxyterephthalaldehyde (DA), to produce highly fluorescent self-exfoliable ionic CONs (DATGCl-iCONs). These fluorescent iCONs are able to sense fluoride ions selectively down to the ppb level via the fluorescence turn-off mechanism. A closer look at the quenching mechanism via NMR, zeta potential measurement, lifetime measurement, and density functional theory calculations reveals unique proton-triggered fluorescence switching behavior of newly synthesized DATGCl-iCONs.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Manisha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Nityasagar Jena
- Institute of Nano Science and Technology (INST), Phase 10, SAS Nagar, Mohali 160062, India
| | - Mohamed Musthafa Iqbal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Yogendra Nailwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology (INST), Phase 10, SAS Nagar, Mohali 160062, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali 140306, India
| |
Collapse
|
18
|
Xiong F, Jiang L, Jia Q. Facile synthesis of guanidyl-based magnetic ionic covalent organic framework composites for selective enrichment of phosphopeptides. Anal Chim Acta 2020; 1099:103-110. [DOI: 10.1016/j.aca.2019.11.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 11/23/2019] [Indexed: 11/15/2022]
|
19
|
Hu C, Gao YC, Zhang C, Liu M, Geng TM. The effects of the crosslinking position and degree of conjugation in perylene tetraanhydride bisimide microporous polymers on fluorescence sensing performance. RSC Adv 2020; 10:5108-5115. [PMID: 35498320 PMCID: PMC9049043 DOI: 10.1039/c9ra10384h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, two fluorescence conjugated microporous polymers based on perylene tetraanhydride bisimide (DP4A0 and DP4A2) were prepared via Sonogashira-Hagihara cross-coupling polymerization for the efficient detection of o-nitrophenol (o-NP). They were well characterized via FT-IR, solid state 13C NMR, elemental analysis, and other material characterization techniques. The experiments proved that both CMPs possess high thermal and chemical stability and a porous nature with Brunauer-Emmett-Teller (BET) specific surface areas of 41.3 and 402.1 m2 g-1. Importantly, owing to signal amplification by the conjugated skeleton, DP4A0 and DP4A2 exhibit extremely high sensitivity to o-NP with K sv values of 1.83 × 104 and 1.69 × 104 L mol-1 and limits of detection of 5.73 × 10-9 and 7.36 × 10-9 mol L-1, respectively. The sensing performance of DP4A0 and DP4A2 was dependent on the position of crosslinking points and crosslinking density. Finally, super amplified quenching was considered the electron transfer mechanism and hydrogen bond interactions were also present.
Collapse
Affiliation(s)
- Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University Anqing 246011 China
| | - Ying-Chun Gao
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University Anqing 246011 China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University Anqing 246011 China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University Anqing 246011 China
| | - Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University Anqing 246011 China
| |
Collapse
|
20
|
Mal A, Vijayakumar S, Mishra RK, Jacob J, Pillai RS, Dileep Kumar BS, Ajayaghosh A. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Arindam Mal
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Samiyappan Vijayakumar
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rakesh K. Mishra
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Department of Chemistry National Institute of Technology, Uttarakhand (NITUK) Srinagar (Garhwal) 246174 India
| | - Jubi Jacob
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Renjith S. Pillai
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - B. S. Dileep Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Ayyappanpillai Ajayaghosh
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
21
|
Mal A, Vijayakumar S, Mishra RK, Jacob J, Pillai RS, Dileep Kumar BS, Ajayaghosh A. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angew Chem Int Ed Engl 2019; 59:8713-8719. [DOI: 10.1002/anie.201912363] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Arindam Mal
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Samiyappan Vijayakumar
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rakesh K. Mishra
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Department of Chemistry National Institute of Technology, Uttarakhand (NITUK) Srinagar (Garhwal) 246174 India
| | - Jubi Jacob
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Renjith S. Pillai
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - B. S. Dileep Kumar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Agro-Processing and Technology Division CSIR-NIIST Thiruvananthapuram 695019 India
| | - Ayyappanpillai Ajayaghosh
- Photoscience and Photonics Section Chemical Science and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
22
|
Yin HQ, Yin F, Yin XB. Strong dual emission in covalent organic frameworks induced by ESIPT. Chem Sci 2019; 10:11103-11109. [PMID: 32206259 PMCID: PMC7069231 DOI: 10.1039/c9sc03040a] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Here we reveal the effects of hydrogen bonds and alkyl groups on the structure and emission of covalent organic frameworks (COFs). Hydrogen bonds improve molecular rigidity leading to high crystallinity and restrict intramolecular rotation to enhance the emission of COFs. An excited-state intramolecular proton transfer (ESIPT) effect for dual emission is achieved via the intramolecular hydrogen bonds between hydroxyl groups and imine bonds. Alkyl groups increase interlayer spacing as a natural "scaffold" and achieve a staggered AB stacking mode to decrease aggregation-caused quenching. Based on the above guidance, COF-4-OH with strong emission is prepared with 2,4,6-triformylphloroglucinol (TFP) and 9,9-dibutyl-2,7-diaminofluorene (DDAF). Strong dual emission is observed and used to differentiate organic solvents with different polarities, to determine the water content in organic solvents, and to detect different pH levels. Our work serves as a guide for the rational design of functional monomers for the preparation of emissive COFs.
Collapse
Affiliation(s)
- Hua-Qing Yin
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Fangfei Yin
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
23
|
Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens Bioelectron 2019; 145:111699. [PMID: 31563802 DOI: 10.1016/j.bios.2019.111699] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/16/2023]
Abstract
Covalent organic frameworks (COFs), as an emerging class of porous crystalline polymers, are built by the combination of the light elements through the strong covalent bonds. In the past decade, COFs have been reported to show plenty of unique properties (such as ordered channels, large specific surface area, highly tunable porosity, optional building blocks, predictable and stable structure, and abundant functional groups), and have been widely applied in multiple fields. Recently, to further improve the potential performances of COFs and extend their applicability, a number of COFs with various functionalities have been successfully developed through the functionalization modification. In this review, we summarized the advanced design and construction of functionalized COFs, including COFs with post-synthetic modification, COFs-based composites (e.g. COFs-metal nanoparticles composites, COFs-metal oxide nanoparticles composites, COFs-MOFs composites, and COFs-enzyme composites), and molecularly imprinted COFs. Impressively, the applications of functionalized COFs to sensing also have been comprehensively summarized, including colorimetric sensing, fluorescent sensing, electrochemical sensing, and other sensing (such as quartz crystal microbalance (QCM) sensing, photoelectrochemical sensing, and humidity sensing). In the end, future opportunities and challenges in this promising field are tentatively proposed.
Collapse
|
24
|
Fernandes SPS, Romero V, Espiña B, Salonen LM. Tailoring Covalent Organic Frameworks To Capture Water Contaminants. Chemistry 2019; 25:6461-6473. [DOI: 10.1002/chem.201806025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Soraia P. S. Fernandes
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
- Department of Chemistry, QOPNAUniversity of Aveiro 3810-193 Aveiro Portugal
| | - Vanesa Romero
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
- Department of Analytical and Food Chemistry, Faculty of ChemistryUniversity of Vigo As Lagoas-Marcosende 36310 Vigo Spain
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| |
Collapse
|