1
|
Nordenskiöld L, Shi X, Korolev N, Zhao L, Zhai Z, Lindman B. Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Adv Colloid Interface Sci 2024; 326:103133. [PMID: 38547652 DOI: 10.1016/j.cis.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
DNA is a highly charged polyelectrolyte and is prone to associative phase separation driven by the presence of multivalent cations, charged surfactants, proteins, polymers and colloids. The process of DNA phase separation induced by positively charged species is often called DNA condensation. Generally, it refers to either intramolecular DNA compaction (coil-globule transition) or intermolecular DNA aggregation with macroscopic phase separation, but the formation of a DNA liquid crystalline system is also displayed. This has traditionally been described by polyelectrolyte theory and qualitative (Flory-Huggins-based) polymer theory approaches. DNA in the cell nucleus is packed into chromatin wound around the histone octamer (a protein complex comprising two copies each of the four histone proteins H2A, H2B, H3 and H4) to form nucleosomes separated by linker DNA. During the last decade, the phenomenon of the formation of biomolecular condensates (dynamic droplets) by liquid-liquid phase separation (LLPS) has emerged as a generally important mechanism for the formation of membraneless organelles from proteins, nucleic acids and their complexes. DNA and chromatin droplet formation through LLPS has recently received much attention by in vitro as well as in vivo studies that established the importance of this for compartmentalisation in the cell nucleus. Here, we review DNA and chromatin LLPS from a general colloid physical chemistry perspective. We start with a general discussion of colloidal phase separation in aqueous solutions and review the original (pre-LLPS era) work on DNA (macroscopic) phase separation for simpler systems with DNA in the presence of multivalent cations and well-defined surfactants and colloids. Following that, we discuss and illustrate the similarities of such macroscopic phase separation with the general behaviour of LLPS droplet formation by associative phase separation for DNA-protein systems, including chromatin; we also note cases of segregative association. The review ends with a discussion of chromatin LLPS in vivo and its physiological significance.
Collapse
Affiliation(s)
- Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Björn Lindman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Physical Chemistry, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
2
|
Musselman CA, Kutateladze TG. Visualizing Conformational Ensembles of the Nucleosome by NMR. ACS Chem Biol 2022; 17:495-502. [PMID: 35196453 DOI: 10.1021/acschembio.1c00954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of chromatin not only compacts the eukaryotic genome into the nucleus but also provides a mechanism for the regulation of all DNA templated processes. Spatial and temporal modulation of the chromatin structure is critical in such regulation and involves fine-tuned functioning of the basic subunit of chromatin, the nucleosome. It has become apparent that the nucleosome is an inherently dynamic system, but characterization of these dynamics at the atomic level has remained challenging. NMR spectroscopy is a powerful tool for investigating the conformational ensemble and dynamics of proteins and protein complexes, and recent advances have made the study of large systems possible. Here, we review recent studies which utilize NMR spectroscopy to uncover the atomic level conformation and dynamics of the nucleosome and provide a better understanding of the importance of these dynamics in key regulatory events.
Collapse
Affiliation(s)
- Catherine A. Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
3
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sevastyan O. Rabdano
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Sergei A. Izmailov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
- Department of Chemistry Purdue University West Lafayette IN 47906 USA
| | | |
Collapse
|
4
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021; 60:6480-6487. [PMID: 33522067 DOI: 10.1002/anie.202012046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022]
Abstract
The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-μs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | - Matthew D Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Rudra N Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation.,Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|