1
|
Suzuki K, Stanfield JK, Omura K, Shisaka Y, Ariyasu S, Kasai C, Aiba Y, Sugimoto H, Shoji O. A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450-Catalysed Oxidations. Angew Chem Int Ed Engl 2023; 62:e202215706. [PMID: 36519803 DOI: 10.1002/anie.202215706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuma Shisaka
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chie Kasai
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Centre, 1-1-1, Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
2
|
Karasawa M, Yonemura K, Stanfield JK, Suzuki K, Shoji O. Ein Designeraußenmembranprotein fördert die Aufnahme von Täuschmolekülen in einen auf Zytochrom P450BM3 beruhenden Ganzzellbiokatalysator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Kai Yonemura
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho Chiyoda-ku, Tokio 102-0075 Japan
| |
Collapse
|
3
|
Stanfield JK, Shoji O. The Power of Deception: Using Decoy Molecules to Manipulate P450BM3 Biotransformations. CHEM LETT 2021. [DOI: 10.1246/cl.210584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 461-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 461-8602, Japan
| |
Collapse
|
4
|
Karasawa M, Yonemura K, Stanfield JK, Suzuki K, Shoji O. Designer Outer Membrane Protein Facilitates Uptake of Decoy Molecules into a Cytochrome P450BM3-Based Whole-Cell Biocatalyst. Angew Chem Int Ed Engl 2021; 61:e202111612. [PMID: 34704327 DOI: 10.1002/anie.202111612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/11/2022]
Abstract
We report an OmpF loop deletion mutant, which improves the cellular uptake of external additives into an Escherichia coli whole-cell biocatalyst. Through co-expression of the OmpF mutant with wild-type P450BM3 in the presence of decoy molecules, the yield of the whole-cell biotransformation of benzene could be considerably improved. Notably, with C7AM-Pip-Phe the yield duodecupled from 5.7% to 70%, with 80% phenol selectivity. The benzylic hydroxylation of alkyl- and cycloalkylbenzenes was also examined, and with the aid of decoy molecules, propylbenzene and tetralin were converted to 1-hydroxylated products with 78% yield and 94% ( R ) ee for propylbenzene and 92% yield and 94% ( S ) ee for tetralin. Our results suggest that both the decoy molecule and substrate traverse the artificial channel, synergistically boosting whole-cell bioconversions.
Collapse
Affiliation(s)
- Masayuki Karasawa
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Kai Yonemura
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Joshua Kyle Stanfield
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Kazuto Suzuki
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Osami Shoji
- Nagoya University, Graduate School of Science, Furo, Chikusa,, 464-8602, Nagoya, JAPAN
| |
Collapse
|
5
|
Zhang L, Wang Q. Harnessing P450 Enzyme for Biotechnology and Synthetic Biology. Chembiochem 2021; 23:e202100439. [PMID: 34542923 DOI: 10.1002/cbic.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 enzymes (P450s, CYPs) catalyze the oxidative transformation of a wide range of organic substrates. Their functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The enzymes are promising for synthetic biology applications but limited by several drawbacks including low turnover rates, poor stability, the dependance of expensive cofactors and redox partners, and the narrow substrate scope. To conquer these obstacles, emerging strategies including substrate engineering, usage of decoy and decoy-based small molecules auxiliaries, designing of artificial enzyme cascades and the incorporation of materials have been explored based on the unique properties of P450s. These strategies can be applied to a wide range of P450s and can be combined with protein engineering to improve the enzymatic activities. This minireview will focus on some recent developments of these strategies which have been used to leverage P450 catalysis. Remaining challenges and future opportunities will also be discussed.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.,Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Ariyasu S, Stanfield JK, Aiba Y, Shoji O. Expanding the applicability of cytochrome P450s and other haemoproteins. Curr Opin Chem Biol 2020; 59:155-163. [PMID: 32781431 DOI: 10.1016/j.cbpa.2020.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C-H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, 'decoy molecules'. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry.
Collapse
Affiliation(s)
- Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; JST-CREST, Japan.
| |
Collapse
|
7
|
Stanfield JK, Omura K, Matsumoto A, Kasai C, Sugimoto H, Shiro Y, Watanabe Y, Shoji O. Crystals in Minutes: Instant On-Site Microcrystallisation of Various Flavours of the CYP102A1 (P450BM3) Haem Domain. Angew Chem Int Ed Engl 2020; 59:7611-7618. [PMID: 32157795 DOI: 10.1002/anie.201913407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Indexed: 12/14/2022]
Abstract
Despite CYP102A1 (P450BM3) representing one of the most extensively researched metalloenzymes, crystallisation of its haem domain upon modification can be a challenge. Crystal structures are indispensable for the efficient structure-based design of P450BM3 as a biocatalyst. The abietane diterpenoid derivative N-abietoyl-l-tryptophan (AbiATrp) is an outstanding crystallisation accelerator for the wild-type P450BM3 haem domain, with visible crystals forming within 2 hours and diffracting to a near-atomic resolution of 1.22 Å. Using these crystals as seeds in a cross-microseeding approach, an assortment of P450BM3 haem domain crystal structures, containing previously uncrystallisable decoy molecules and diverse artificial metalloporphyrins binding various ligand molecules, as well as heavily tagged haem-domain variants, could be determined. Some of the structures reported herein could be used as models of different stages of the P450BM3 catalytic cycle.
Collapse
Affiliation(s)
- Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Ayaka Matsumoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chie Kasai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Centre, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1-Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-860, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
8
|
Stanfield JK, Omura K, Matsumoto A, Kasai C, Sugimoto H, Shiro Y, Watanabe Y, Shoji O. Kristalle in Minutenschnelle: Sofortige Mikrokristallisation verschiedenster Varianten der CYP102A1‐(P450BM3)‐Hämdomäne. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Keita Omura
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Ayaka Matsumoto
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Chie Kasai
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Centre 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science University of Hyogo 3-2-1-Kouto, Kamigori-cho Ako-gun Hyogo 678-1297 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-860 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| |
Collapse
|
9
|
Peng Y, Li D, Fan J, Xu W, Xu J, Yu H, Lin X, Wu Q. Enantiocomplementary C-H Bond Hydroxylation Combining Photo-Catalysis and Whole-Cell Biocatalysis in a One-Pot Cascade Process. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yongzhen Peng
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Danyang Li
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Jiajie Fan
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Weihua Xu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Jian Xu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; 200237 Shanghai China
| | - Xianfu Lin
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| | - Qi Wu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
10
|
Xu J, Wang C, Cong Z. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis. Chemistry 2019; 25:6853-6863. [PMID: 30698852 DOI: 10.1002/chem.201806383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze the monooxygenation of various organic substrates. These enzymes are fascinating and promising biocatalysts for synthetic applications. Despite the impressive abilities of P450s in the oxidation of C-H bonds, their practical applications are restricted by intrinsic drawbacks, such as poor stability, low turnover rates, the need for expensive cofactors (e.g., NAD(P)H), and the narrow scope of useful non-native substrates. These issues may be overcome through the general strategy of protein engineering, which focuses on the improvement of the catalysts themselves. Alternatively, several emerging strategies have been developed that regulate the P450 catalytic process from the viewpoint of the substrate. These strategies include substrate engineering, decoy molecule, and dual-functional small-molecule co-catalysis. Substrate engineering focuses on improving the substrate acceptance and reaction selectivity by means of an anchoring group. The latter two strategies utilize co-substrate-like small molecules that either are proposed to reform the active site, thereby switching the substrate specificity, or directly participate in the catalytic process, thereby creating new catalytic peroxygenation capabilities towards non-native substrates. For at least 10 years, these approaches have played unique roles in solving the problems highlighted above, either alone or in conjunction with protein engineering. Herein, we review three strategies for substrate regulation in the P450-catalyzed oxidation of non-native substrates. Furthermore, we address remaining challenges and potential solutions associated with these approaches.
Collapse
Affiliation(s)
- Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Chunlan Wang
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of, Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
11
|
Putkaradze N, Litzenburger M, Hutter MC, Bernhardt R. CYP109E1 from Bacillus megaterium
Acts as a 24- and 25-Hydroxylase for Cholesterol. Chembiochem 2019; 20:655-658. [DOI: 10.1002/cbic.201800595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Natalia Putkaradze
- Institute of Biochemistry; Saarland University; Campus, Building B2.2 66123 Saarbrücken Germany
| | - Martin Litzenburger
- Institute of Biochemistry; Saarland University; Campus, Building B2.2 66123 Saarbrücken Germany
| | | | - Rita Bernhardt
- Institute of Biochemistry; Saarland University; Campus, Building B2.2 66123 Saarbrücken Germany
| |
Collapse
|