1
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
2
|
Zhai C, Isaacs L. New Synthetic Route to Water‐Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties**. Chemistry 2022; 28:e202201743. [DOI: 10.1002/chem.202201743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| |
Collapse
|
3
|
Strilets D, Cerneaux S, Barboiu M. Enhanced Desalination Polyamide Membranes Incorporating Pillar[5]arene through in-Situ Aggregation-Interfacial Polymerization-isAGRIP. Chempluschem 2021; 86:1602-1607. [PMID: 34882993 DOI: 10.1002/cplu.202100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Membrane-based desalination have an important role in water purification. Inspired by highly performant biological proteins, artificial water channels (AWC) have been proposed as active components to overcome the permeability/selectivity trade-off of desalination processes. Promising performances have been reported with Pillararene crystalline phases revealing impressive molecular-scale separation performances, when used as selective porous materials. Herein, we demonstrate that Pillar[5]arene PA[5] aggregates are in-situ generated and incorporated during the interfacial polymerization, within industrially relevant reverse osmosis polyamide-PA membranes. In particular, we explore the best combination between PA[5] aggregates and m-phenylenediamine (MPD) and trimesoylchloride (TMC) monomers to achieve their seamless incorporation in a defect-free hybrid polyamide PA[5]-PA membranes for enhanced desalination. The performances of the reference and hybrid membranes are evaluated by cross-flow filtration under real reverse osmosis conditions (15.5 bar of applied pressure) by filtration of brackish feed streams. The optimized membranes achieve a ∼40 % improvement, in water permeance of ∼2.76±0.5 L m-2 h-1 bar-1 and high 99.5 % NaCl rejection with respect to the reference TFC membrane and a similar water permeance compared to one of the best commercial BW30 membranes (3.0 L m-2 h-1 bar-1 and 99.5 % NaCl rejection).
Collapse
Affiliation(s)
- Dmytro Strilets
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group, University of Montpellier ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Sophie Cerneaux
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group, University of Montpellier ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group, University of Montpellier ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| |
Collapse
|
4
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
5
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021; 60:19997-20002. [PMID: 34189820 DOI: 10.1002/anie.202107903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 01/07/2023]
Abstract
Chemoresponsive supramolecular systems with infinite switching capability are important for applications in recycled materials and intelligent devices. To attain this objective, here a chemoresponsive polypseudorotaxane is reported on the basis of a bis(p-phenylene)-34-crown-10 macrocycle (H) and a cyano-substituted viologen guest (G). H and G form a [2]pseudorotaxane (H⊃G) both in solution and in the solid state. Upon addition of AgSF6 , a polypseudorotaxane (denoted as [H⋅G⋅Ag]n ) forms as synergistically driven by host-guest complexation and metal-coordination interactions. [H⋅G⋅Ag]n depolymerizes into a [3]pseudorotaxane (denoted as H2 ⋅G⋅Ag2 ⋅acetone2 ) upon addition of H and AgSF6 , while it reforms with successive addition of G. The transformations between [H⋅G⋅Ag]n and H2 ⋅G⋅Ag2 ⋅acetone2 can be switched for infinite cycles, superior to the conventional chemoresponsive supramolecular polymeric systems with limited switching capability.
Collapse
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Wang WM, Dai D, Wu JR, Wang CY, Wang Y, Yang YW. Recyclable Supramolecular Assembly-Induced Emission System for Selective Detection and Efficient Removal of Mercury(II). Chemistry 2021; 27:11879-11887. [PMID: 34043289 DOI: 10.1002/chem.202101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 02/06/2023]
Abstract
An efficient strategy for simultaneously detecting and removing Hg2+ from water is vital to address mercury pollution. Herein a supramolecular assembly G⊂H with photoluminescent properties is facilely constructed through the self-assembly of a functional pillar[5]arene bearing two N,N-dimethyldithiocarbamoyl binding sites (H) and an AIE-active tetraphenylethene derivative (G). Remarkably, the fluorescence of G⊂H can be exclusively quenched by Hg2+ among the 30 cations due to the formation of non-luminous ground state complex and only L-cysteine can restore fluorescence in the common 20 amino acids. Meanwhile, the probe G⊂H has a considerable thermal and pH stability, a good anti-interference property from various cations, and a satisfactory sensitivity. More importantly, G⊂H exhibits a prominent capability of Hg2+ removal with rapid capture rate (within 1 h) and excellent adsorption efficiency (98 %), as well as a highly efficient recyclability without losing any adsorption activity.
Collapse
Affiliation(s)
- Wei-Ming Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
8
|
Kato K, Onishi K, Maeda K, Yagyu M, Fa S, Ichikawa T, Mizuno M, Kakuta T, Yamagishi TA, Ogoshi T. Thermally Responsive Poly(ethylene oxide)-Based Polyrotaxanes Bearing Hydrogen-Bonding Pillar[5]arene Rings*. Chemistry 2021; 27:6435-6439. [PMID: 33543802 DOI: 10.1002/chem.202005099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Indexed: 11/09/2022]
Abstract
Poly(ethylene oxide)s (PEOs) are useful polymers with good water solubility, biological compatibility, and commercial availability. PEOs with various end groups were threaded into pillar[5]arene rings in a mixture of water and methanol to afford pseudopolyrotaxanes. Corresponding polyrotaxanes were also constructed by capping COOH-terminated pseudopolyrotaxanes with bulky amines, in which multiple hydrogen bonds involving the pillar[5]arene OH groups were critically important to prevent dethreading. The number of threaded ring components could be rationally controlled in these materials, providing a simple and versatile method to tune the mechanical and thermal properties. Specifically, a polyrotaxane with a high-molecular-weight axle became elastic upon heating above the melting point of PEOs and exhibited temperature-dependent shape memory property because of the topological confinement and crosslinked hydrogen bonds.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Takahiro Ichikawa
- Department of Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo, 1848588, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| |
Collapse
|
9
|
Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:947. [PMID: 33917874 PMCID: PMC8068209 DOI: 10.3390/nano11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures-pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Lyaysan I. Makhmutova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Konstantin S. Usachev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia;
| | - Daut R. Islamov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov St., 8, 420088 Kazan, Russia;
| | - Olga A. Mostovaya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Anastasia A. Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Valeriy N. Kizhnyaev
- Department of Theoretical and Applied Organic Chemistry and Polymerization Processes, Irkutsk State University, K. Marksa, 1, 664003 Irkutsk, Russia;
| | - Ivan I. Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| |
Collapse
|
10
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu XY, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020; 60:9205-9214. [PMID: 32794352 DOI: 10.1002/anie.202010150] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA-based nanomaterials, and PA-based polymeric materials. To the best of our knowledge, this is the first overview on PA-based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jacobs H Jordan
- The Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu X, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xueqi Tian
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Minzan Zuo
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xiao‐Yu Hu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Strilets D, Fa S, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew Chem Int Ed Engl 2020; 59:23213-23219. [PMID: 32905651 DOI: 10.1002/anie.202009219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/17/2020] [Indexed: 11/08/2022]
Abstract
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.
Collapse
Affiliation(s)
- Dmytro Strilets
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Arthur Hardiagon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 (Japan), Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
13
|
Guo S, Huang Q, Chen Y, Wei J, Zheng J, Wang L, Wang Y, Wang R. Synthesis and Bioactivity of Guanidinium‐Functionalized Pillar[5]arene as a Biofilm Disruptor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Jun Zheng
- Faculty of Health Sciences University of Macau, Taipa Macau 999078 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| |
Collapse
|
14
|
Guo S, Huang Q, Chen Y, Wei J, Zheng J, Wang L, Wang Y, Wang R. Synthesis and Bioactivity of Guanidinium‐Functionalized Pillar[5]arene as a Biofilm Disruptor. Angew Chem Int Ed Engl 2020; 60:618-623. [DOI: 10.1002/anie.202013975] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Jun Zheng
- Faculty of Health Sciences University of Macau, Taipa Macau 999078 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau 999078 China
| |
Collapse
|
15
|
Strilets D, Fa S, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dmytro Strilets
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Arthur Hardiagon
- CNRS Université de Paris UPR 9080 Laboratoire de Biochimie Théorique 13 rue Pierre et Marie Curie F-75005 Paris France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild PSL Research University Paris France
| | - Marc Baaden
- CNRS Université de Paris UPR 9080 Laboratoire de Biochimie Théorique 13 rue Pierre et Marie Curie F-75005 Paris France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild PSL Research University Paris France
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa 920-1192 (Japan) Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
16
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
17
|
Han C, Zhao D, Dong S. Host-Guest Complexations Between Pillar[6]arenes and Neutral Pentaerythritol Derivatives. Chem Asian J 2020; 15:2642-2645. [PMID: 32662186 DOI: 10.1002/asia.202000723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/11/2020] [Indexed: 12/31/2022]
Abstract
It is demonstrated that three kinds of neutral pentaerythritol derivatives possess promising host-guest complexations with pillar[6]arenes both in solution and in the solid state. The inclusion structures were characterized by NMR spectroscopy and X-ray crystallography. The complexation properties in different solvents were also investigated.
Collapse
Affiliation(s)
- Chengyou Han
- Department of Chemistry College of Science, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Dezhi Zhao
- Department of Chemistry College of Science, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, P. R. China
| |
Collapse
|
18
|
Zhang G, Moosa B, Chen A, Khashab NM. Separation and Detection of
meta
‐ and
ortho
‐Substituted Benzene Isomers by Using a Water‐Soluble Pillar[5]arene. Chempluschem 2020; 85:1244-1248. [DOI: 10.1002/cplu.202000275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aiping Chen
- Clean Combustion Research Center (CCRC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
19
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
20
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020; 59:11267-11272. [PMID: 32220121 DOI: 10.1002/anie.202001145] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
21
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
22
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020; 59:9309-9313. [DOI: 10.1002/anie.201916515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
23
|
Uncharged water-soluble amide derivatives of pillar[5]arene: synthesis and supramolecular self-assembly with tetrazole-containing polymers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Xu K, Zhang Z, Yu C, Wang B, Dong M, Zeng X, Gou R, Cui L, Li C. A Modular Synthetic Strategy for Functional Macrocycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000909] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kaidi Xu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
- Center for Supramolecular Chemistry and Catalysis and Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Zhi‐Yuan Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chengmao Yu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
- Center for Supramolecular Chemistry and Catalysis and Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Bin Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Ming Dong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Xianqiang Zeng
- Center for Supramolecular Chemistry and Catalysis and Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Rui Gou
- Center for Supramolecular Chemistry and Catalysis and Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Lei Cui
- Center for Supramolecular Chemistry and Catalysis and Department of ChemistryShanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of EducationTianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal University Tianjin 300387 P. R. China
- Center for Supramolecular Chemistry and Catalysis and Department of ChemistryShanghai University Shanghai 200444 P. R. China
| |
Collapse
|
25
|
Xu K, Zhang ZY, Yu C, Wang B, Dong M, Zeng X, Gou R, Cui L, Li C. A Modular Synthetic Strategy for Functional Macrocycles. Angew Chem Int Ed Engl 2020; 59:7214-7218. [PMID: 32052539 DOI: 10.1002/anie.202000909] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 12/15/2022]
Abstract
Reported here is a molecule-Lego synthetic strategy for macrocycles with functional skeletons, involving one-pot and high-yielding condensation between bis(2,4-dimethoxyphenyl)arene monomers and paraformaldehyde. By changing the blocks, variously functional units (naphthalene, pyrene, anthraquinone, porphyrin, etc.) can be conveniently introduced into the backbone of macrocycles. Interestingly, the macrocyclization can be tuned by the geometrical configuration of monomeric blocks. Linear (180°) monomer yield cyclic trimers and pentamers, while V-shaped (120°, 90° and 60°) monomers tend to form dimers. More significantly, even heterogeneous macrocycles are obtained in moderate yield by co-oligomerization of different monomers. This series of macrocycles have the potential to be prosperous in the near future.
Collapse
Affiliation(s)
- Kaidi Xu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhi-Yuan Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Chengmao Yu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Bin Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Ming Dong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Xianqiang Zeng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui Gou
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Lei Cui
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
26
|
Shurpik DN, Sevastyanov DA, Zelenikhin PV, Padnya PL, Evtugyn VG, Osin YN, Stoikov II. Nanoparticles based on the zwitterionic pillar[5]arene and Ag +: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:421-431. [PMID: 32215229 PMCID: PMC7082700 DOI: 10.3762/bjnano.11.33] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
For the first time, stable pillar[5]arene/Ag+ nanoparticles, consisting of water-soluble pillar[5]arene containing γ-sulfobetaine fragments and Ag+ ions without Ag-Ag bonds, were synthesized and characterized. The pillar[5]arene/Ag+ (ratio 1:10) nanoparticles obtained were cubic with a rib length of 100 nm and are less cytotoxic than Ag+ ions. The survival of the A549 model cells in the presence of pillar[5]arene/Ag+ (1:10) nanoparticles at a concentration of 30 and 40 μM was 76% and 55%, while in the absence of pillar[5]arene, the cell survival for free Ag+ ions at the same concentration was 30% and 10%, respectively. The results can be used to create new antibacterial materials and 2D biomedical coatings.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Denis A Sevastyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel L Padnya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Yuriy N Osin
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| |
Collapse
|
27
|
Tominaga M, Hyodo T, Maekawa Y, Kawahata M, Yamaguchi K. One‐Step Synthesis of Cyclophanes as Crystalline Sponge and Their [2]Catenanes through S
N
Ar Reactions. Chemistry 2020; 26:5157-5161. [DOI: 10.1002/chem.201905854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| | - Yumi Maekawa
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| | - Masatoshi Kawahata
- Showa Pharmaceutical University 3–3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa CampusTokushima Bunri University 1314-1 Shido, Sanuki Kagawa 769-2193 Japan
| |
Collapse
|
28
|
Lei S, Xiao H, Zeng Y, Tung C, Wu L, Cong H. BowtieArene: A Dual Macrocycle Exhibiting Stimuli‐Responsive Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheng‐Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
29
|
Lei S, Xiao H, Zeng Y, Tung C, Wu L, Cong H. BowtieArene: A Dual Macrocycle Exhibiting Stimuli‐Responsive Fluorescence. Angew Chem Int Ed Engl 2020; 59:10059-10065. [DOI: 10.1002/anie.201913340] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Sheng‐Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
30
|
Shurpik DN, Mostovaya OA, Sevastyanov DA, Lenina OA, Sapunova AS, Voloshina AD, Petrov KA, Kovyazina IV, Cragg PJ, Stoikov II. Supramolecular neuromuscular blocker inhibition by a pillar[5]arene through aqueous inclusion of rocuronium bromide. Org Biomol Chem 2019; 17:9951-9959. [PMID: 31729508 DOI: 10.1039/c9ob02215e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A water-soluble pillar[5]arene, decafunctionalized with thioether and carboxylate fragments, was synthesized as a structural analogue of Sugammadex. Its ability to restore the contraction of the diaphragm muscle by encapsulating the muscle relaxant rocuronium bromide was demonstrated. Using UV-vis, NMR and fluorescence spectroscopy, it was shown that the muscle relaxant is associated with the pillar[5]arene with an association constant of 4500 M-1 and a stoichiometry of 1 : 1. The structure of the inclusion complex of the pillar[5]arene with rocuronium bromide was additionally investigated by quantum chemical methods.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tian H, Wang C, Li H, Deng R, Li R, Meguellati K. A New Cationic Functionalized Pillar[5]arene and Applications for Adsorption of Anionic Dyes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Huasheng Tian
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Haiying Li
- Faculty of Chemistry; College of Chemistry; Northeast Normal University; 5268 Renmin Street 130024 Changchun PR China
| | - Rong Deng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Runan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC); College of Chemistry; Jilin University; 2699 Qianjin Street 130012 Changchun PR China
| |
Collapse
|
32
|
Kaizerman-Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH-Responsive Pillar[6]arene-based Water-Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019; 58:5302-5306. [PMID: 30786135 DOI: 10.1002/anie.201900217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Indexed: 01/08/2023]
Abstract
We describe the preparation of the first water-soluble pH-responsive supramolecular hexagonal boxes (SHBs) based on multiple charge-assisted hydrogen bonds between peramino-pillar[6]arenes 2 with the molecular "lid" mellitic acid (1 a). The interaction between 2 and 1 a, as well as the other "lids" pyromellitic and trimesic acids (1 b and 1 c, respecively) were studied by a combination of experimental and computational methods. Interestingly, the addition of 1 a to the complexes of the protonated form of pillar[6]arene 2, that is, 3, with bis-sulfonate 4 a or 4 b, immediately led to guest escape along with the formation of closed 1 a2 2 supramolecular boxes. Moreover, the process of the openning and closing of the supramolecular boxes along with threading and escaping of the guests, respectively, was found to be reversible and pH-responsive. This study paves the way for the easy and modular preparation of different SHBs that may have myriad applications.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Noam Tal
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
33
|
Kaizerman‐Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH‐Responsive Pillar[6]arene‐based Water‐Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dana Kaizerman‐Kane
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Maya Hadar
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Noam Tal
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Roman Dobrovetsky
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Yossi Zafrani
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
- Department of Organic ChemistryIsrael Institute for Biological Research Ness-Ziona 740000 Israel
| | - Yoram Cohen
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| |
Collapse
|