1
|
Li R, Yang F, Zhang L, Li M, Wang G, Wang W, Xu Y, Wei W. Manipulating Host-Guest Charge Transfer of a Water-Soluble Double-Cavity Cyclophane for NIR-II Photothermal Therapy. Angew Chem Int Ed Engl 2023; 62:e202301267. [PMID: 36802335 DOI: 10.1002/anie.202301267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Water-soluble small organic photothermal agents (PTAs) over NIR-II biowindow (1000-1350 nm) are highly desirable, but the rarity greatly limits their applications. Based on a water-soluble double-cavity cyclophane GBox-44+ , we report a class of host-guest charge transfer (CT) complexes as structurally uniform PTAs for NIR-II photothermal therapy. As a result of its high electron-deficiency, GBox-44+ can bind different electron-rich planar guests with a 1 : 2 host/guest stoichiometry to readily tune the CT absorption band that extends to the NIR-II region. When using a diaminofluorene guest substituted with an oligoethylene glycol chain, the host-guest system realized both good biocompatibility and enhanced photothermal conversion at 1064 nm, and was then exploited as a high-efficiency NIR-II PTA for cancer cell and bacterial ablation. This work broadens the potential applications of host-guest cyclophane systems and provides a new access to bio-friendly NIR-II photoabsorbers with well-defined structures.
Collapse
Affiliation(s)
- Ran Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Fei Yang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.,Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liying Zhang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanqing Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wei Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
2
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
3
|
Li RH, Lin Q, Li SL, Sun Y, Liu Y. MXenes Functionalized with Macrocyclic Hosts: From Molecular Design to Applications. Chempluschem 2023; 88:e202200423. [PMID: 36680301 DOI: 10.1002/cplu.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Two-dimensional (2D) MXene has aroused wide attention for its excellent physical and chemical properties. The interlayer engineering formed by layer-by-layer stacking of MXene nanosheets can be employed for molecular sieving and water purification by incorporating specific groups onto the exterior surface of MXene. Macrocyclic hosts exhibiting unique structural features and recognition ability can construct smart devices for external stimuli with reversible features between macrocycles and guests. On that basis, macrocyclic hosts can be anchored to MXene to provide numerous insights into their compositions and intercalation states. In this review, the MXene prepared based on macrocyclic hosts from molecular design to applications is highlighted. Various MXenes functionalized with macrocyclic hosts are empowered in functional membrane (including water purification, organic solvent nanofiltration, and electromagnetic shielding), photocatalysis, sensing, and adsorption (interactions with specific guest). Hopefully, this review can bring new inspiration to the design of multifunctional MXene-based materials and improving its practical applications.
Collapse
Affiliation(s)
- Run-Hao Li
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Qian Lin
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Shu-Lan Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.,State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
4
|
Yang X, Li C, Giorgi M, Siri D, Bugaut X, Chatelet B, Gigmes D, Yemloul M, Hornebecq V, Kermagoret A, Brasselet S, Martinez A, Bardelang D. Energy-Efficient Iodine Uptake by a Molecular Host⋅Guest Crystal. Angew Chem Int Ed Engl 2022; 61:e202214039. [PMID: 36198650 PMCID: PMC10092189 DOI: 10.1002/anie.202214039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Recently, porous organic crystals (POC) based on macrocycles have shown exceptional sorption and separation properties. Yet, the impact of guest presence inside a macrocycle prior to adsorption has not been studied. Here we show that the inclusion of trimethoxybenzyl-azaphosphatrane in the macrocycle cucurbit[8]uril (CB[8]) affords molecular porous host⋅guest crystals (PHGC-1) with radically new properties. Unactivated hydrated PHGC-1 adsorbed iodine spontaneously and selectively at room temperature and atmospheric pressure. The absence of (i) heat for material synthesis, (ii) moisture sensitivity, and (iii) energy-intensive steps for pore activation are attractive attributes for decreasing the energy costs. 1 H NMR and DOSY were instrumental for monitoring the H2 O/I2 exchange. PHGC-1 crystals are non-centrosymmetric and I2 -doped crystals showed markedly different second harmonic generation (SHG), which suggests that iodine doping could be used to modulate the non-linear optical properties of porous organic crystals.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille UnivCNRSICRAMUTechMarseilleFrance
| | - Chunyang Li
- School of Materials Science and Engineering& Material Corrosion and Protection Key Laboratory of Sichuan ProvinceSichuan University of Science & EngineeringZigong643000P. R. China
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | - Michel Giorgi
- Aix Marseille UnivCNRS, CentraleMarseille, FSCMSpectropoleMarseilleFrance
| | - Didier Siri
- Aix Marseille UnivCNRSICRAMUTechMarseilleFrance
| | - Xavier Bugaut
- Université de StrasbourgUniversité de Haute-AlsaceCNRSLIMAUMR 704267000StrasbourgFrance
| | - Bastien Chatelet
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | | | - Mehdi Yemloul
- Aix Marseille UnivCNRSCentrale MarseilleiSm2AMUTechMarseilleFrance
| | | | | | | | | | | |
Collapse
|
5
|
Li C, Manick A, Zhao Y, Liu F, Chatelet B, Rosas R, Siri D, Gigmes D, Monnier V, Charles L, Broggi J, Liu S, Martinez A, Kermagoret A, Bardelang D. Sequential Formation of Heteroternary Cucurbit[10]uril (CB[10]) Complexes. Chemistry 2022; 28:e202201656. [PMID: 35980006 PMCID: PMC9826255 DOI: 10.1002/chem.202201656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/11/2023]
Abstract
The globular and monocationic guest molecule trimethyl-azaphosphatrane (AZAP, a protonated Verkade superbase) was shown to form a host:guest 1 : 1 complex with the cucurbit[10]uril (CB[10]) macrocycle in water. Molecular dynamics calculations showed that CB[10] adopts an 8-shape with AZAP occupying the majority of the internal space, CB[10] contracting around AZAP and leaving a significant part of the cavity unoccupied. This residual space was used to co-include planar and monocationic co-guest (CG) molecules, affording heteroternary CB[10]⋅AZAP⋅CG complexes potentially opening new perspectives in supramolecular chemistry.
Collapse
Affiliation(s)
- Chunyang Li
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
- School of Materials Science and EngineeringSichuan University of Science & EngineeringZigong643000P. R. China
- Material Corrosion and Protection Key Laboratory of Sichuan ProvinceSichuan University of Science & EngineeringZigong643000P. R. China
| | - Anne‐Doriane Manick
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | - Yuxi Zhao
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Fengbo Liu
- School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhan430081P. R. China
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, SpectropoleFR 1739MarseilleFrance
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | | | | | - Julie Broggi
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Simin Liu
- School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhan430081P. R. China
| | - Alexandre Martinez
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | | | | |
Collapse
|
6
|
Soavi G, Pedrini A, Devi Das A, Terenziani F, Pinalli R, Hickey N, Medagli B, Geremia S, Dalcanale E. Encapsulation of Trimethine Cyanine in Cucurbit[8]uril: Solution versus Solid‐State Inclusion Behavior. Chemistry 2022; 28:e202200185. [PMID: 35201658 PMCID: PMC9313864 DOI: 10.1002/chem.202200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Inclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host‐guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host‐guest complex with an association constant of 1.5×106 M−1. At concentrations suitable for NMR experiments, the slow formation of a supramolecular polymer was observed, followed by precipitation. Single crystals X‐ray structure elucidation confirmed the formation of a polymer with 1 : 1 stoichiometry in the solid state.
Collapse
Affiliation(s)
- Giuseppe Soavi
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anjali Devi Das
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesca Terenziani
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Roberta Pinalli
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Neal Hickey
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Barbara Medagli
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Enrico Dalcanale
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
7
|
Seco A, Yu S, Tron A, McClenaghan ND, Pina F, Jorge Parola A, Basílio N. Light- and pH-regulated Water-soluble Pseudorotaxanes Comprising a Cucurbit[7]uril and a Flavylium-based Axle. Chemistry 2021; 27:16512-16522. [PMID: 34632666 DOI: 10.1002/chem.202102343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/25/2022]
Abstract
A linear double pyridinium-terminated thread comprising a central chalcone moiety is shown to provide two independent binding sites with similar affinity for cucurbit[7]uril (CB7) macrocycles in water as judged from NMR, UV-Visible and fluorescence spectroscopies. Association results in [2] and [3]pseudorotaxanes, which are both pH and photosensitive. Switching from the neutral chalcone to the cationic flavylium form upon irradiation at 365 nm under acidic conditions provided an enhanced CB7 association (K1:1 increases from 1.2×105 M-1 to 1.5×108 M-1 ), limiting spontaneous on-thread cucurbituril shuttling. This co-conformational change in the [2]pseudorotaxane is reversible in the dark with kobs =4.1×10-4 s-1 . Threading the flavylium moiety into CB7 leads to a dramatic increase in the fluorescence quantum yield, from 0.29 in the free axle to 0.97 in the [2]pseudorotaxane and 1.0 in the [3]pseudorotaxane.
Collapse
Affiliation(s)
- André Seco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Shilin Yu
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, 33405, Talence, France
| | - Arnaud Tron
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, 33405, Talence, France
| | - Nathan D McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, 33405, Talence, France
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - A Jorge Parola
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT-NOVA, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
8
|
Liu Y, Zhang Y, Yu H, Liu Y. Cucurbituril‐Based Biomacromolecular Assemblies. Angew Chem Int Ed Engl 2020; 60:3870-3880. [DOI: 10.1002/anie.202009797] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Rama T, Blanco-Gómez A, Peinador C, García MD. Self-Assembly of Pseudo[1]rotaxanes by Palladium(II)/Platinum(II)-Directed Integrative Social Self-Sorting: Is the Metal Required? Chempluschem 2020; 85:2672-2678. [PMID: 33326700 DOI: 10.1002/cplu.202000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Indexed: 11/07/2022]
Abstract
New results are presented on the multicomponent supramolecular synthesis of pseudo[1]rotaxanes, achieved by designing pairs of structurally matching N-monoalkyl-4,4'-bipyridinium/2,7-diazapyrenium-based ligands having complementary π-donor/acceptor features, and intended to self-assemble into the targeted supramolecules by following integrative self-sorting processes. In all the studied cases, it was found that the envisioned species, characterized by NMR spectroscopy and MS spectrometry, arise as the main products of the self-assembly in aqueous media by using palladium(II)/platinum(II) metal centers as the guiding force. Crucially, we have also found that by improving the π-donor/acceptor properties of the matching pairs of ligands (L4 and L5 ), the integrative self-sorting processes prevail even in the absence of metallic ions to afford the heterodimeric species with an association constant being 756±43 M-1 .
Collapse
Affiliation(s)
- Tamara Rama
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain
| | - Marcos D García
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
11
|
Yamamoto K, Nameki R, Sogawa H, Takata T. Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Cross‐Linker. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koji Yamamoto
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Present address: Division of Molecular Science, Faculty of Science and Technology Gunma University 1-5-1 Tenjin-cho Kiryu, Gunma 376-8515 Japan
| | - Riku Nameki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hiromitsu Sogawa
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Present address: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering Kansai University 3-3-35 Yamate-cho Suita, Osaka 564-8680 Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
12
|
Yang X, Wang R, Kermagoret A, Bardelang D. Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau, Taipa Macau China
| | | | | |
Collapse
|
13
|
Yang X, Wang R, Kermagoret A, Bardelang D. Oligomeric Cucurbituril Complexes: from Peculiar Assemblies to Emerging Applications. Angew Chem Int Ed Engl 2020; 59:21280-21292. [PMID: 32567745 DOI: 10.1002/anie.202004622] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Proteins are an endless source of inspiration. By carefully tuning the amino-acid sequence of proteins, nature made them evolve from primary to quaternary structures, a property specific to protein oligomers and often crucial to accomplish their function. On the other hand, the synthetic macrocycles cucurbiturils (CBs) have shown outstanding recognition properties in water, and a growing number of (host)n :(guest)n supramolecular polymers involving CBs have been reported. However, the burgeoning field of discrete (n:n) host:guest oligomers has just started to attract attention. While 2:2 complexes are the major oligomers, 3:3 and up to 6:6 oligomers have been described, some associated with emerging applications, specific to the (n:n) arrangements. Design rules to target (n:n) host:guest oligomers are proposed toward new advanced host:guest systems.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
14
|
Yamamoto K, Nameki R, Sogawa H, Takata T. Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Cross-Linker. Angew Chem Int Ed Engl 2020; 59:18023-18028. [PMID: 32578285 DOI: 10.1002/anie.202007866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/08/2022]
Abstract
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross-linker reagent. The dinuclear complex (PdMC)2 was prepared by one-step macrocyclization followed by the double palladation reaction. 1 H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6-disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4-vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross-linker (PdMC-VP)2 . Radical co-polymerization of VP and t-butylstyrene in the presence of (PdMC-VP)2 afforded a stable rotaxane cross-linked polymer (RCP). An elastic RCP was also prepared by using n-butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross-linked polymers.
Collapse
Affiliation(s)
- Koji Yamamoto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Present address: Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Riku Nameki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiromitsu Sogawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Present address: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
15
|
Zhang YC, Xu ZY, Wang ZK, Wang H, Zhang DW, Liu Y, Li ZT. A Woven Supramolecular Metal-Organic Framework Comprising a Ruthenium Bis(terpyridine) Complex and Cucurbit[8]uril: Enhanced Catalytic Activity toward Alcohol Oxidation. Chempluschem 2020; 85:1498-1503. [PMID: 32644267 DOI: 10.1002/cplu.202000391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The self-assembly of a diamondoid woven supramolecular metal-organic framework wSMOF-1 has been achieved from intertwined [Ru(tpy)2 ]2+ (tpy=2,2',6',2''-terpyridine) complex M1 and cucurbit[8]uril (CB[8]) in water, where the intermolecular dimers formed by the appended aromatic arms of M1 are encapsulated in CB[8]. wSMOF-1 exhibits ordered pore periodicity in both water and the solid state, as confirmed by a combination of 1 H NMR spectroscopy, UV-vis absorption, isothermal titration calorimetry, dynamic light scattering, small angle X-ray scattering and selected area electron diffraction experiments. The woven framework has a pore aperture of 2.1 nm, which allows for the free access of both secondary and primary alcohols and tert-butyl hydroperoxide (TBHP). Compared with the control molecule [Ru(tpy)2 ]Cl2 , the [Ru(tpy)2 ]2+ unit of wSMOF-1 exhibits a remarkably higher heterogeneous catalysis activity for the oxidation of alcohols by TBHP in n-hexane. For the oxidation of 1-phenylethan-1-ol, the yield of acetophenone was increased from 10 % to 95 %.
Collapse
Affiliation(s)
- Yun-Chang Zhang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Zi-Yue Xu
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Ze-Kun Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Hui Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| | - Yi Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California, 94720, USA
| | - Zhan-Ting Li
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
Miskolczy Z, Megyesi M, Biczók L, Prabodh A, Biedermann F. Kinetics and Mechanism of Cation-Induced Guest Release from Cucurbit[7]uril. Chemistry 2020; 26:7433-7441. [PMID: 31943402 PMCID: PMC7318709 DOI: 10.1002/chem.201905633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 12/11/2022]
Abstract
The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped‐flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7‐dimethyldiazapyrenium shows a cation‐independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (Mn+) due to competitive formation of CB7–Mn+ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non‐symmetric berberine (B+). The formation of ternary complex B+–CB7–Mn+ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B+–CB7 inclusion complex. Large cations, such as K+ and Ba2+, also promoted B+ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host–guest systems.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal-Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020; 59:7435-7438. [PMID: 32073709 PMCID: PMC7217015 DOI: 10.1002/anie.202001059] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/06/2023]
Abstract
The use of di(2-pyridyl)ketone in subcomponent self-assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn4 L4 tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal-ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2-formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2, affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli.
Collapse
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | |
Collapse
|
18
|
Xu L, Zhang D, Ronson TK, Nitschke JR. Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Xu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dawei Zhang
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
19
|
Zhang H, Liang F, Yang Y. Dual‐Stimuli Responsive 2D Supramolecular Organic Framework for the Detection of Azoreductase Activity. Chemistry 2019; 26:198-205. [DOI: 10.1002/chem.201904443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Hao Zhang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry (NMAC) College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Ying‐Wei Yang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry (NMAC) College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
20
|
Zhang EX, Wang DX, Wang MX. Hydroxy-Substituted Azacalix[4]Pyridines: Synthesis, Structure, and Construction of Functional Architectures. Front Chem 2019; 7:553. [PMID: 31475133 PMCID: PMC6707087 DOI: 10.3389/fchem.2019.00553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
A number of hydroxyl-substituted azacalix[4]pyridines were synthesized using Pd-catalyzed macrocyclic "2+2" and "3+1" coupling methods and the protection-deprotection strategy of hydroxyl group. While the conformation of the these hydroxyl-substituted azacalix[4]pyridines is fluxional in solution, in the solid state, they adopted shape-persistent 1,3-alternate conformations. Besides, X-ray analysis revealed that the existence of hydroxy groups on the para-position of pyridine facilitated the formation of solvent-bridged intermolecular hydrogen bonding for mono-hydroxyl-substituted while partial tautomerization for four-hydroxyl-substituted macrocycles, respectively. Taking the hydroxyl-substituted azacalix[4]pyridines as molecular platforms, multi-macrocycle-containing architectures and functional building blocks were constructed. The self-assembly behavior of the resulting building blocks was investigated in crystalline state.
Collapse
Affiliation(s)
- En-Xuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Xiang Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Zhang Y, Liu J, Yu Q, Wen X, Liu Y. Targeted Polypeptide–Microtubule Aggregation with Cucurbit[8]uril for Enhanced Cell Apoptosis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Jiang‐Hua Liu
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Qilin Yu
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Xin Wen
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
- Department of Chemical BiologyNational Pesticide Engineering Research CenterNankai University Tianjin 300071 China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
22
|
Zhang Y, Liu J, Yu Q, Wen X, Liu Y. Targeted Polypeptide–Microtubule Aggregation with Cucurbit[8]uril for Enhanced Cell Apoptosis. Angew Chem Int Ed Engl 2019; 58:10553-10557. [DOI: 10.1002/anie.201903243] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Jiang‐Hua Liu
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Qilin Yu
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Xin Wen
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
- Department of Chemical BiologyNational Pesticide Engineering Research CenterNankai University Tianjin 300071 China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|