1
|
Shi XM, Xu YT, Zhou BY, Wang B, Yu SY, Zhao WW, Jiang D, Chen HY, Xu JJ. Electrochemical Single-Cell Protein Therapeutics Using a Double-Barrel Nanopipette. Angew Chem Int Ed Engl 2023; 62:e202215801. [PMID: 36550087 DOI: 10.1002/anie.202215801] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Single-cell protein therapeutics is expected to promote our in-depth understanding of how a specific protein with a therapeutic dosage treats the cell without population averaging. However, it has not yet been tackled by current single-cell nanotools. We address this challenge by the use of a double-barrel nanopipette, in which one lumen was used for electroosmotic cytosolic protein delivery and the other was customized for ionic evaluation of the consequence. Upon injection of protein DJ-1 through the delivery lumen, upregulation of the antioxidant protein could protect neural PC-12 cells against oxidative stress from phorbol myristate acetate exposure, as deduced by targeting of the cytosolic hydrogen peroxide by the detecting lumen. The nanotool developed in this study for single-cell protein therapeutics provides a perspective for future single-cell therapeutics involving different therapeutic modalities, such as peptides, enzymes and nucleic acids.
Collapse
Affiliation(s)
- Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bing-Yu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Zhang S, Qin H, Cheng S, Zhang Y, Gao N, Zhang M. An Electrochemical Nanosensor for Monitoring the Dynamics of Intracellular H 2 O 2 Upon NADH Treatment. Angew Chem Int Ed Engl 2023; 62:e202300083. [PMID: 36807970 DOI: 10.1002/anie.202300083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Reactive oxygen species (ROS)-based therapeutic strategies play an important role in cancer treatment. However, in situ, real-time and quantitative analysis of intracellular ROS in cancer treatment for drug screening is still a challenge. Herein we report one selective hydrogen peroxide (H2 O2 ) electrochemical nanosensor, which is prepared by electrodeposition of Prussian blue (PB) and polyethylenedioxythiophene (PEDOT) onto carbon fiber nanoelectrode. With the nanosensor, we find that the level of intracellular H2 O2 increases with NADH treatment and that increase is dose-dependent to the concentration of NADH. High-dose of NADH (above 10 mM) can induce cell death and intratumoral injection of NADH is validated for inhibiting tumor growth in mice. This study highlights the potential of electrochemical nanosensor for tracking and understanding the role of H2 O2 in screening new anticancer drug.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hancheng Qin
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Nan Gao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
3
|
Lu W, Cao Y, Qing G. Recent advance in solid state nanopores modification and characterization. Chem Asian J 2022; 17:e202200675. [PMID: 35974427 DOI: 10.1002/asia.202200675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Nanopore, due to its advantages of modifiable, controllability and sensitivity, has made a splash in recent years in the fields of biomolecular sequencing, small molecule detection, salt differential power generation, and biomimetic ion channels, etc. In these applications, the role of chemical or biological modification is indispensable. Compared with small molecules, the modification of polymers is more difficult and the methods are more diverse. Choosing appropriate modification method directly determines the success or not of the research, therefore, it is necessary to summarize the polymer modification methods toward nanopores. In addition, it is also important to provide clear and convincing evidence that the nanopore modification is successful, the corresponding characterization methods are also indispensable. Therefore, this review will summarize the methods of polymer modification of nanopores and efficient characterization methods. And we hope that this review will provide some reference value for like-minded researchers.
Collapse
Affiliation(s)
- Wenqi Lu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 116023, Dalian, CHINA
| | - Yuchen Cao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 116023, Dalian, CHINA
| | - Guangyan Qing
- Dalian Institute of Chemical Physics, CAS Key Laboratory of Separation Science for Analytical Chemistry, 457 Zhongshan Road, 116023, Dalian, CHINA
| |
Collapse
|
4
|
Liu J, Zheng X, Hua Y, Deng J, He P, Yu Z, Zhang X, Shi X, Shao Y. Electrochemical Study of Ion Transfers Processes at the Interfaces between Water and Trifluorotoluene and Its Derivatives. ChemElectroChem 2022. [DOI: 10.1002/celc.202200389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junjie Liu
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xinhe Zheng
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Yutong Hua
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Jintao Deng
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Peng He
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Zhengyou Yu
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xianhao Zhang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xiaohong Shi
- Taiyuan Normal University Department of Chemistry CHINA
| | - Yuanhua Shao
- Peking University College of Chemistry and Molecular Engineering 202 Chengfu Road 100871 Beijing CHINA
| |
Collapse
|
5
|
Ruan Y, Chen F, Xu Y, Zhang T, Yu S, Zhao W, Jiang D, Chen H, Xu J. An Integrated Photoelectrochemical Nanotool for Intracellular Drug Delivery and Evaluation of Treatment Effect. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Feng‐Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Tian‐Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Si‐Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Ruan YF, Chen FZ, Xu YT, Zhang TY, Yu SY, Zhao WW, Jiang D, Chen HY, Xu JJ. An Integrated Photoelectrochemical Nanotool for Intracellular Drug Delivery and Evaluation of Treatment Effect. Angew Chem Int Ed Engl 2021; 60:25762-25765. [PMID: 34590767 DOI: 10.1002/anie.202111608] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Indexed: 01/07/2023]
Abstract
With reduced background and high sensitivity, photoelectrochemistry (PEC) may be applied as an intracellular nanotool and open a new technological direction of single-cell study. Nevertheless, the present palette of single-cell tools lacks such a PEC-oriented solution. Here a dual-functional photocathodic single-cell nanotool capable of direct electroosmotic intracellular drug delivery and evaluation of oxidative stress is devised by engineering a target-specific organic molecule/NiO/Ni film at the tip of a nanopipette. Specifically, the organic molecule probe serves simultaneously as the biorecognition element and sensitizer to synergize with p-type NiO. Upon intracellular delivery at picoliter level, the oxidative stress effect will cause structural change of the organic probe, switching its optical absorption and altering the cathodic response. This work has revealed the potential of PEC single-cell nanotool and extended the boundary of current single-cell electroanalysis.
Collapse
Affiliation(s)
- Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Wang H, Ruan Y, Zhu L, Shi X, Zhao W, Chen H, Xu J. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hai‐Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao‐Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
8
|
Wang HY, Ruan YF, Zhu LB, Shi XM, Zhao WW, Chen HY, Xu JJ. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angew Chem Int Ed Engl 2021; 60:13244-13250. [PMID: 33340231 DOI: 10.1002/anie.202014798] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 01/30/2023]
Abstract
New tools for single-cell interrogation enable deeper understanding of cellular heterogeneity and associated cellular behaviors and functions. Information of RNA expression in single cell could contribute to our knowledge of the genetic regulatory circuits and molecular mechanism of disease development. Although significant progresses have been made for intracellular RNA analysis, existing methods have a trade-off between operational complexity and practical feasibility. We address this challenge by combining the ionic current rectification property of nanopipette reactor with duplex-specific nuclease-assisted hybridization chain reaction for signal amplification to realize a simple and practical intracellular nanosensor with minimal invasiveness, which enables single-cell collection and electrochemical detection of intracellular RNA with cell-context preservation. Systematic studies on differentiation of oncogenic miR-10b expression levels in non-malignant breast cells, metastatic breast cancer cells as well as non-metastatic breast cancer cells were then realized by this nanotool accompanied by assessment of different drugs effects. This work has unveiled the ability of electrochemistry to probe intracellular RNA and opened new opportunities to study the gene expression and heterogeneous complexity under physiological conditions down to single-cell level.
Collapse
Affiliation(s)
- Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Jiang H, Qi YT, Wu WT, Wen MY, Liu YL, Huang WH. Intracellular monitoring of NADH release from mitochondria using a single functionalized nanowire electrode. Chem Sci 2020; 11:8771-8778. [PMID: 34123129 PMCID: PMC8163350 DOI: 10.1039/d0sc02787a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the powerhouse of cells, and also their suicidal weapon store. Mitochondrial dysfunction can cause the opening of the mitochondrial permeability transition pore (mPTP) and nicotinamide adenine dinucleotide (NADH) release from mitochondria, eventually leading to the disruption of energy metabolism and even cell death. Hence, NADH is often considered a marker of mitochondrial function, but in situ monitoring of NADH release from mitochondria in single living cells remains a great challenge. Herein, we develop a functionalized single nanowire electrode (NWE) for electrochemical detection of NADH release from intracellular mitochondria by modifying conductive polymer (poly(3,4-ethylendioxythiophene), PEDOT)-coated carbon nanotubes (CNTs) on the surface of a SiC@C nanowire. The positively charged PEDOT facilitates the accumulation of negatively charged NADH at the electrode surface and CNTs promote electron transfer, thus endowing the NWE with high sensitivity and selectivity. Further studies show that resveratrol, a natural product, specifically induced NADH release from mitochondria of MCF-7 cancer cells rather than non-cancerous MCF-10 A cells, indicating the potential therapeutic effects of resveratrol in cancer treatment. This work provides an efficient method to monitor mitochondrial function by in situ electrochemical measurement of NADH release, which will be of great benefit for physiological and pathological studies.
Collapse
Affiliation(s)
- Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
10
|
Ding S, Li M, Gong H, Zhu Q, Shi G, Zhu A. Sensitive and Selective Measurement of Hydroxyl Radicals at Subcellular Level with Tungsten Nanoelectrodes. Anal Chem 2020; 92:2543-2549. [PMID: 31927939 DOI: 10.1021/acs.analchem.9b04139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hydroxyl radical (•OH) is an essential reactive oxygen species involved in critical cell functions. However, the mechanisms controlling its subcellular localization and intracellular level during health and disease remain poorly understood. This is due to the challenge of detecting •OH that are highly reactive and consequently short-lived (in vivo half-life of ∼10-9 s). Herein, we present tungsten nanoelectrodes functionalized with stable 1-hexanethiol (HAT) for selective and sensitive detection of •OH at the subcellular level via the destruction of the self-assembled monolayer of HAT on the nanoelectrode tip. Taking advantage of the ultrasmall nanotip and the super mechanical toughness, the tungsten nanoelectrode could easily penetrate a single living cell without inducing any observable damage. Controlled by a high precision micromanipulator, the •OH level in RAW 264.7 murine macrophages under amyloid β (Aβ) induced oxidative stress were first investigated by the nanoelectrodes at the subcellular level. Moreover, the results revealed the cordycepin-mediated cytoprotection of macrophages through modulation of PI3K/Akt pathway activity and introduction of heme oxygenase-1 (HO-1). We believe that the developed nanoelectrochemical method has shown great capacities for the study of potential drugs for therapeutic intervention of Alzheimer's disease.
Collapse
Affiliation(s)
- Shushu Ding
- School of Pharmacy , Nantong University , 19 Qixiu Road , Nantong 226019 , People's Republic of China
| | - Meina Li
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| | - Haoyang Gong
- School of Pharmacy , Nantong University , 19 Qixiu Road , Nantong 226019 , People's Republic of China
| | - Qing Zhu
- School of Pharmacy , Nantong University , 19 Qixiu Road , Nantong 226019 , People's Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , People's Republic of China
| |
Collapse
|
11
|
Wang D, Qi G, Zhou Y, Li H, Zhang Y, Xu C, Hu P, Jin Y. Glucose level determination in single cells in their satiety and starvation states using an enzymatic functional glass nanopore. Chem Commun (Camb) 2020; 56:5393-5396. [DOI: 10.1039/d0cc01531h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymatic functional glass nanopipettes containing glucose oxidase (GOx) and cytochrome c (Cyt c) were developed for detecting glucose in single cells.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ya Zhou
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Ping Hu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|