Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production.
Nat Commun 2019;
10:1512. [PMID:
30944322 PMCID:
PMC6447597 DOI:
10.1038/s41467-019-09535-w]
[Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/15/2019] [Indexed: 12/03/2022] Open
Abstract
Natural vascular plants leaves rely on differences in osmotic pressure, transpiration and guttation to produce tons of clean water, powered by sunlight. Inspired by this, we report a sunlight-driven purifier for high-efficiency water purification and production. This sunlight-driven purifier is characterized by a negative temperature response poly(N-isopropylacrylamide) hydrogel (PN) anchored onto a superhydrophilic melamine foam skeleton, and a layer of PNIPAm modified graphene (PG) filter membrane coated outside. Molecular dynamics simulation and experimental results show that the superhydrophilicity of the relatively rigid melamine skeleton significantly accelerates the swelling/deswelling rate of the PNPG-F purifier. Under one sun, this rational engineered structure offers a collection of 4.2 kg m−2 h−1 and an ionic rejection of > 99% for a single PNPG-F from brine feed via the cooperation of transpiration and guttation. We envision that such a high-efficiency sunlight driven system could have great potential applications in diverse water treatments.
Natural leaves can purify water under sunlight through a combination of osmotic pressure, transpiration, and guttation effects. Here the authors design a composite material mimicking these combined effects, achieving sunlight-driven pure water production from brine with high collection rate.
Collapse