1
|
Noguchi S, Kiyama R, Yoshida M, Marsudi MA, Kashimura N, Tadanaga K, Gong JP, Nonoyama T. Real-Space Visualization of Charged Polymer Network of Hydrogel by Double Network Strategy and Mineral Staining. NANO LETTERS 2024; 24:9088-9095. [PMID: 38979827 DOI: 10.1021/acs.nanolett.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Hydrogels consist of three-dimensional (3D) and complicated polymer networks that determine their physical properties. Among the methods for structural analyses of hydrogels, the real-space imaging of a polymer network of hydrogels on a nanometer scale is one of the optimal methods; however, it is highly challenging. In this study, we propose a direct observation method for cationic polymer networks using transmission electron microscopy (TEM). By combining the double network strategy and the mineral staining technique, we overcame the challenges of polymer aggregation and the low electron density of the polymer. An objective cationic network was incorporated into a neutral skeleton network to suppress shrinkage during subsequent staining. Titania mineralization along the cationic polymer strands provided sufficient electron density for the objective polymer network for TEM observation. This observation method enables the visualization of local structures in real space and plays a complementary role to scattering methods for soft matter structure analysis.
Collapse
Affiliation(s)
- Shinji Noguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan
| | - Ryuji Kiyama
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
- Laboratoire de Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Masahiro Yoshida
- Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Maradhana Agung Marsudi
- Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Naohiro Kashimura
- Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Kiyoharu Tadanaga
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Hori R, Higashimine K, Notoya O, Shinohara KI. Synthesis and Direct Observation of Chiral Supramolecular Polymer of Porphyrin Having Cholesteryl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5535-5544. [PMID: 38407032 DOI: 10.1021/acs.langmuir.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We report the synthesis and microscopic investigations of two chiral helical porphyrin supramolecular polymers with different coordinating metals that are expected to be capable of serving as synthetic macromolecular motors driven by thermal fluctuations. Furthermore, based on their microscopic images, we propose a stepwise process for the formation of higher-order structures. These porphyrins formed completely different association states, and this was reflected in the marked differences in the shapes of the supramolecular polymers. The Cu-TChOAlaCPP supramolecular polymers formed H-aggregate rods in diisopropyl ether, then grew into superhelices and then into ribbons. On the other hand, Zn-TChOAlaCPP supramolecular polymers formed aggregates based on van der Waals interactions in diethyl ether, then grew into fibers and then grew into multiple-helices and ribbons. In addition, we imaged the interaction between long and short chains of the Cu-TChOAlaCPP supramolecular polymer by fast-scanning atomic force microscopy, and we indicated the availability as a macromolecular motor driven by thermal fluctuations.
Collapse
Affiliation(s)
- Ryoga Hori
- Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Koichi Higashimine
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Osamu Notoya
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Ken-Ichi Shinohara
- Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
3
|
Ganser C, Uchihashi T. Measuring mechanical properties with high-speed atomic force microscopy. Microscopy (Oxf) 2024; 73:14-21. [PMID: 37916758 DOI: 10.1093/jmicro/dfad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is now a widely used technique to study the dynamics of single biomolecules and complex structures. In the past, it has mainly been used to capture surface topography as structural analysis, leading to important discoveries not attainable by other methods. Similar to conventional AFM, the scope of HS-AFM was recently expanded to encompass quantities beyond topography, such as the measurement of mechanical properties. This review delves into various methodologies for assessing mechanical properties, ranging from semi-quantitative approaches to precise force measurements and their corresponding sample responses. We will focus on the application to single proteins such as bridging integrator-1, ion channels such as Piezo1, complex structures such as microtubules and supramolecular fibers. In all these examples, the unique combination of quantifiable force application and high spatiotemporal resolution allows to unravel mechanisms that cannot be investigated by conventional means.
Collapse
Affiliation(s)
- Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
4
|
Venugopal A, Ruiz-Perez L, Swamynathan K, Kulkarni C, Calò A, Kumar M. Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angew Chem Int Ed Engl 2023; 62:e202208681. [PMID: 36469792 DOI: 10.1002/anie.202208681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.
Collapse
Affiliation(s)
- Akhil Venugopal
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Lorena Ruiz-Perez
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - K Swamynathan
- Soft Condensed Matter, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore-560080, India.,Department of Chemistry, NITTE Meenakshi Institute of Technology, Yelahanka, Bengaluru 560064, India
| | - Chidambar Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Annalisa Calò
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| | - Mohit Kumar
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
5
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
6
|
Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Lett 2021; 10:14-38. [PMID: 35548998 DOI: 10.1021/acsmacrolett.0c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.
Collapse
Affiliation(s)
- Lucas R. Parent
- Innovation Partnership Building, The University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
7
|
Bäumer N, Kartha KK, Palakkal JP, Fernández G. Morphology control in metallosupramolecular assemblies through solvent-induced steric demand. SOFT MATTER 2020; 16:6834-6840. [PMID: 32633744 DOI: 10.1039/d0sm00537a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the supramolecular self-assembly of π-conjugated systems into defined morphologies is a prerequisite for the preparation of functional materials. In recent years, the development of sophisticated sample preparation protocols and modulation of various experimental conditions (solvent, concentration, temperature, etc.) have enabled precise control over aggregation pathways of different types of monomer units. A common method to achieve pathway control consists in the combination of two miscible solvents in defined proportions - a "poor" and "good" solvent. However, the role of solvents of opposed polarity in the self-assembly of a given building block still remains an open question. Herein, we unravel the effect of aggregation-inducing solvent systems of opposed polarity (aqueous vs. non-polar media) on the supramolecular assembly of a new bolaamphiphilic Pt(ii) complex. A number of experimental methods show a comparable molecular packing in both media driven by a synergy of solvophobic, aromatic and weak hydrogen-bonding interactions. However, morphological analysis of the respective aggregates in aqueous and non-polar media reveals a restricted aggregate growth in aqueous media into spherical nanoparticles and a non-restricted 2D-nanosheet formation in non-polar media. These findings are attributed to a considerably more efficient solvation and, in turn, increased steric demand of the hydrophilic chains in aqueous media than in nonpolar media, which can be explained by the entrapment of water molecules in the hydrophilic aggregate shell via hydrogen bonds. Our findings reveal that the different solvation of peripheral solubilizing groups in solvents of opposed polarity is an efficient method for morphology control in self-assembly.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
8
|
Sasaki N, Yuan J, Fukui T, Takeuchi M, Sugiyasu K. Control over the Aspect Ratio of Supramolecular Nanosheets by Molecular Design. Chemistry 2020; 26:7840-7846. [PMID: 32150308 DOI: 10.1002/chem.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Indexed: 11/10/2022]
Abstract
Recent developments in kinetically controlled supramolecular polymerization permit control of the size (i.e., length and area) of self-assembled nanostructures. However, control of molecular self-assembly at a level comparable with organic synthetic chemistry and the achievement of structural complexity at a hierarchy larger than the molecular level remain challenging. This study focuses on controlling the aspect ratio of supramolecular nanosheets. A systematic understanding of the relationship between the monomer structure and the self-assembly energy landscape has derived a new monomer capable of forming supramolecular nanosheets. With this monomer in hand, the aspect ratio of a supramolecular nanosheet is demonstrated that it can be controlled by modulating intermolecular interactions in two dimensions.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Molecular Design & Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Jennifer Yuan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Tomoya Fukui
- Molecular Design & Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Masayuki Takeuchi
- Molecular Design & Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Kazunori Sugiyasu
- Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Molecular Design & Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
9
|
Zhang K, Oldenhof S, Wang Y, Esch JH, Mendes E. Spatial Manipulation and Integration of Supramolecular Filaments on Hydrogel Substrates towards Advanced Soft Devices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Zhang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Sander Oldenhof
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- Netherlands Forensic Institute Laan van Ypenburg 6 2497 GB Den Haag The Netherlands
| | - Yiming Wang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Meilong Road 130 200237 Shanghai China
| | - Jan H. Esch
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
10
|
Zhang K, Oldenhof S, Wang Y, Esch JH, Mendes E. Spatial Manipulation and Integration of Supramolecular Filaments on Hydrogel Substrates towards Advanced Soft Devices. Angew Chem Int Ed Engl 2020; 59:8601-8607. [DOI: 10.1002/anie.201915100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Kai Zhang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Sander Oldenhof
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- Netherlands Forensic Institute Laan van Ypenburg 6 2497 GB Den Haag The Netherlands
| | - Yiming Wang
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Meilong Road 130 200237 Shanghai China
| | - Jan H. Esch
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering Deflt University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
11
|
Bäumer N, Kartha KK, Allampally NK, Yagai S, Albuquerque RQ, Fernández G. Exploiting Coordination Isomerism for Controlled Self-Assembly. Angew Chem Int Ed Engl 2019; 58:15626-15630. [PMID: 31351026 PMCID: PMC6856968 DOI: 10.1002/anie.201908002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 01/01/2023]
Abstract
We exploited the inherent geometrical isomerism of a PtII complex as a new tool to control supramolecular assembly processes. UV irradiation and careful selection of solvent, temperature, and concentration leads to tunable coordination isomerism, which in turn allows fully reversible switching between two distinct aggregate species (1D fibers↔2D lamellae) with different photoresponsive behavior. Our findings not only broaden the scope of coordination isomerism, but also open up exciting possibilities for the development of novel stimuli-responsive nanomaterials.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Kalathil K. Kartha
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | | | - Shiki Yagai
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33-Yayoi-choInage-KuChiba263-8522Japan
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
12
|
Tashiro R, Taguchi H, Hidaka K, Endo M, Sugiyama H. Effects of Physical Damage in the Intermediate Phase on the Progression of Amyloid β Fibrillization. Chem Asian J 2019; 14:4140-4145. [DOI: 10.1002/asia.201901193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/29/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical SciencesSuzuka University of Medical Science 3500-3 Minamitamagaki-Cyo, Suzuka-Shi Mie 513-8670 Japan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical SciencesSuzuka University of Medical Science 3500-3 Minamitamagaki-Cyo, Suzuka-Shi Mie 513-8670 Japan
| | - Kumi Hidaka
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Masayuki Endo
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Yoshida-ushinomiyacho Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
13
|
Bäumer N, Kartha KK, Allampally NK, Yagai S, Albuquerque RQ, Fernández G. Kontrolle über Selbstassemblierung durch Ausnutzung von Koordinationsisomerie. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | | | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33-Yayoi-cho, Inage-Ku Chiba 263-8522 Japan
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|