2
|
Subratti A, Ramkissoon A, Lalgee LJ, Jalsa NK. Synthesis and evaluation of the antibiotic-adjuvant activity of carbohydrate-based phosphoramidate derivatives. Carbohydr Res 2020; 500:108216. [PMID: 33309230 DOI: 10.1016/j.carres.2020.108216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Phosphoramidates are becoming increasingly recognized as molecular targets for therapeutic development. Their biological functions are significantly influenced by their inherent properties such as reactivity, as well as the P-N backbone which allows for structural diversity. In this study we report the synthesis of novel carbohydrate-based phosphoramidate derivatives via the Staudinger-phosphite reaction; along with an evaluation of their adjuvant activity in combination with popular antibiotics. Our targets involved variation in both the sugar residue as well as the identity of the phosphoramidate. Moderate to excellent yields of these derivatives were obtained. Notable adjuvant activity was observed with the halogenated phosphoramidates. For the fluorinated glucose derivative in particular, a remarkable 32-fold decrease in the MIC of Ampicillin was obtained against Methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Afraz Subratti
- Department of Chemistry, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Antonio Ramkissoon
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Lorale J Lalgee
- Department of Chemistry, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Nigel K Jalsa
- Department of Chemistry, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago.
| |
Collapse
|
3
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism‐Related Bacterium
Clostridium bolteae
Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
4
|
Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Zou X, Seeberger PH, Yin J. Chemical Synthesis Elucidates the Key Antigenic Epitope of the Autism-Related Bacterium Clostridium bolteae Capsular Octadecasaccharide. Angew Chem Int Ed Engl 2020; 59:20529-20537. [PMID: 32734715 DOI: 10.1002/anie.202007209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The gut pathogen Clostridium bolteae has been associated with the onset of autism spectrum disorder (ASD). To create vaccines against C. bolteae, it is important to identify exact protective epitopes of the immunologically active capsular polysaccharide (CPS). Here, a series of C. bolteae CPS glycans, up to an octadecasaccharide, was prepared. Key to achieving the total syntheses is a [2+2] coupling strategy based on a β-d-Rhap-(1→3)-α-d-Manp repeating unit that in turn was accessed by a stereoselective β-d-rhamnosylation. The 4,6-O-benzylidene-induced conformational locking is a powerful strategy for forming a β-d-mannose-type glycoside. An indirect strategy based on C2 epimerization of β-d-quinovoside was efficiently achieved by Swern oxidation and borohydride reduction. Sequential glycosylation, and regioselective and global deprotection produced the disaccharide and tetrasaccharide, up to the octadecasaccharide. Glycan microarray analysis of sera from rabbits immunized with inactivated C. bolteae bacteria revealed a humoral immune response to the di- and tetrasaccharide, but none of the longer sequences. The tetrasaccharide may be a key motif for designing glycoconjugate vaccines against C. bolteae.
Collapse
Affiliation(s)
- Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Dacheng Shen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
5
|
Coelho JP, Matern J, Albuquerque RQ, Fernández G. Mechanistic Insights into Statistical Co-Assembly of Metal Complexes. Chemistry 2019; 25:8960-8964. [PMID: 30920063 PMCID: PMC7318678 DOI: 10.1002/chem.201900604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/09/2022]
Abstract
Statistical copolymerization plays a key role in many biological and technological processes; however, mechanistic understanding of the formation of analogous supramolecular counterparts remains limited. Herein, we report detailed insights into the supramolecular co-assembly of two π-conjugated PdII and PtII complexes, which in isolation self-assemble into flexible fibers and nanodisks, respectively. An efficient single-step co-assembly into only one type of nanostructure (fibers or nanodisks) takes place if any of the components is in excess. In contrast, equimolar mixtures lead to PdII -rich fiber-like co-assemblies by a statistical co-nucleation event along with a residual amount of self-sorted nanodisks in a stepwise manner.
Collapse
Affiliation(s)
- Joao Paulo Coelho
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, MünsterCorrensstrasse 4048149MünsterGermany
| | - Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, MünsterCorrensstrasse 4048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, MünsterCorrensstrasse 4048149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität, MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|