1
|
Li K, Li H, Guo D, Zhan X, Li A, Cai Z, Li Z, Qu Z, Xue L, Li M, Song Y. 3D Optical Heterostructure Patterning by Spatially Allocating Nanoblocks on a Printed Matrix. ACS NANO 2022; 16:14838-14848. [PMID: 36094880 DOI: 10.1021/acsnano.2c05721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heterostructures have attracted enormous interest due to the properties arising from the coupling and synergizing between multiscale structures and the promising applications in electronics, mechanics, and optics. However, it is challenging for current technologies to precisely integrate cross-scale micro/nanomaterials in three dimensions (3D). Herein, we realize the precise spatial allocation of nanoblocks on micromatrices and programmable 3D optical heterostructure patterning via printing-assisted self-assembly. This bottom-up approach fully exploits the advantages of printing in on-demand patterning, low cost, and mass production, as well as the merits of solution-based colloidal assembly for simple structuring and high-precision regulating, which facilitates the patterned integration of multiscale materials. Importantly, the luminescent nanoparticle assembly can be accurately coupled to the dye-doped polymer matrix by regulating the interface wettability, enabling facile multicolor tuning in a single heterostructure. Thus, the heterostructure can be specially encoded for anticounterfeiting and encryption applications due to the morphology-dependent and interface-coupling-induced luminescence. Moreover, with the capability to achieve single-nanoparticle resolution, these findings have great potential for designing photonic superstructures and advanced optical devices.
Collapse
Affiliation(s)
- Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiuqin Zhan
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhiyuan Qu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Zhang Z, Wang H, Su M, Sun Y, Tan S, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain‐Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Meng Su
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Yali Sun
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Shuang‐Jie Tan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics Fudan University Shanghai 200433 P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center General Hospital of the People's Liberation Army of China Beijing 100853 P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory The second medical center of Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Yanlin Song
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| |
Collapse
|
3
|
Zhang Z, Wang H, Su M, Sun Y, Tan SJ, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain-Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021; 60:24234-24240. [PMID: 34494351 DOI: 10.1002/anie.202109985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Fast and ultrasensitive detection of pathogens is very important for efficient monitoring and prevention of viral infections. Here, we demonstrate a label-free optical detection approach that uses a printed nanochain assay for colorimetric quantitative testing of viruses. The antibody-modified nanochains have high activity and specificity which can rapidly identify target viruses directly from biofluids in 15 min, as well as differentiate their subtypes. Arising from the resonance induced near-field enhancement, the color of nanochains changes with the binding of viruses that are easily observed by a smartphone. We achieve the detection limit of 1 PFU μL-1 through optimizing the optical response of nanochains in visible region. Besides, it allows for real-time response to virus concentrations ranging from 0 to 1.0×105 PFU mL-1 . This low-cost and portable platform is also applicable to rapid detection of other biomarkers, making it attractive for many clinical applications.
Collapse
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Shuang-Jie Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, 200433, P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center, General Hospital of the People's Liberation Army of China, Beijing, 100853, P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory, The second medical center of Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| |
Collapse
|
4
|
Li K, Li C, Li H, Li M, Song Y. Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing. iScience 2021; 24:102121. [PMID: 33644719 PMCID: PMC7892991 DOI: 10.1016/j.isci.2021.102121] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural color attracts considerable scientific interests and industrial explorations in various fields for the eco-friendly, fade-resistant, and dynamic advantages. After the long-period evolution, nature has achieved the optimized color structures at various length scales, which has inspired people to learn and replicate them to improve the artificial structure color. In this review, we focus on the design of artificial structural colors based on colloidal particle assembly and summarize the functional bioinspired structure colors. We demonstrate the design principles of biomimetic structural colors via the precise structure engineering and typical bottom-up methods. Some main applications are outlined in the following chapter. Finally, we propose the existing challenges and promising prospects. This review is expected to introduce the recent design strategies about the artificial structure colors and provide the insights for its future development.
Collapse
Affiliation(s)
- Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chang Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Shen H, Zhao K, Wang Z, Xu X, Lu J, Liu W, Lu X. Local Acoustic Fields Powered Assembly of Microparticles and Applications. MICROMACHINES 2019; 10:mi10120882. [PMID: 31888215 PMCID: PMC6952984 DOI: 10.3390/mi10120882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 05/24/2023]
Abstract
Controllable assembly in nano-/microscale holds considerable promise for bioengineering, intracellular manipulation, diagnostic sensing, and biomedical applications. However, up to now, micro-/nanoscopic assembly methods are severely limited by the fabrication materials, as well as energy sources to achieve the effective propulsion. In particular, reproductive manipulation and customized structure is quite essential for assemblies to accomplish a variety of on-demand tasks at small scales. Here, we present an attractive assembly strategy to collect microparticles, based on local acoustic forces nearby microstructures. The micro-manipulation chip is built based on an enhanced acoustic field, which could tightly trap microparticles to the boundaries of the microstructure by tuning the applied driving frequency and voltage. Numerical simulations and experimental demonstrations illustrate that the capturing and assembly of microparticles is closely related to the size of particles, owing to the vibration-induced locally enhanced acoustic field and resultant propulsion force. This acoustic assembly strategy can open extensive opportunities for lab-on-chip systems, microfactories, and micro-manipulators, among others.
Collapse
Affiliation(s)
- Hui Shen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; (H.S.); (K.Z.); (Z.W.); (X.X.); (J.L.)
| | - Kangdong Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; (H.S.); (K.Z.); (Z.W.); (X.X.); (J.L.)
| | - Zhiwen Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; (H.S.); (K.Z.); (Z.W.); (X.X.); (J.L.)
| | - Xiaoyu Xu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; (H.S.); (K.Z.); (Z.W.); (X.X.); (J.L.)
| | - Jiayu Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; (H.S.); (K.Z.); (Z.W.); (X.X.); (J.L.)
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; (H.S.); (K.Z.); (Z.W.); (X.X.); (J.L.)
| |
Collapse
|