1
|
Guo K, Sun Y, Sun Y, Shang J, Lu Y, Wu Q. Copper-Catalyzed Trifunctionalization of Heteroaryl-Substituted 1-Hexenes via Remote Heteroaryl Migration. Chem Asian J 2024; 19:e202400988. [PMID: 39267120 DOI: 10.1002/asia.202400988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
A copper-catalyzed trifunctionalization (trifluoromethylation, heteroarylation, and cyanation) of heteroaryl-substituted 1-hexenes via remote heteroaryl migration is reported. A variety of CF3 and heteroaryl-containing nitriles were readily constructed under mild conditions. The reaction features high chemo- and regioselectivities and represents a convenient method for the synthesis of multifunctionalized molecules in organic synthesis.
Collapse
Affiliation(s)
- Kang Guo
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yanwen Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yining Sun
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Jiayi Shang
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Yongchao Lu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| | - Qiong Wu
- Hebei Normal University for Nationalities, Chengde, Hebei Province, China
| |
Collapse
|
2
|
Ma Z, Wu X, Zhu C. Merging Fluorine Incorporation and Functional Group Migration. CHEM REC 2023; 23:e202200221. [PMID: 36367274 DOI: 10.1002/tcr.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Indexed: 11/13/2022]
Abstract
Fluorine incorporation by concomitant fluoroalkyl radical addition to alkene or alkyne and functional group migration (FGM) represents an ingenious and robust strategy for the synthesis of structurally diverse fluorinated compounds. This account gives an overview of related studies in our group, in which three main reaction modes are discussed: 1) radical fluoroalkylative difunctionalization of unactivated alkenes via intramolecular FGM; 2) alkene difunctionalization by docking-migration process using fluoroalkyl-containing bifunctional reagents; 3) incorporation of fluoroalkyl group into C(sp3 )-H bond via consecutive hydrogen atom transfer (HAT) and FGM. Relying on these methods, a variety of trifluoromethylation and di-/mono-fluoroalkylation reactions along with the migration of cyano, heteroaryl, oximino, formyl, alkynyl, and alkenyl groups have been accomplished under mild conditions.
Collapse
Affiliation(s)
- Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
3
|
Shi Z, Li Y, Li N, Wang WZ, Lu HK, Yan H, Yuan Y, Zhu J, Ye KY. Electrochemical Migratory Cyclization of N-Acylsulfonamides. Angew Chem Int Ed Engl 2022; 61:e202206058. [PMID: 35606293 DOI: 10.1002/anie.202206058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Benzoxathiazine dioxide, as a bioisostere of the clinically widely used diazoxide, exhibits interesting biological activity. However, limited success has been achieved in terms of its concise and direct synthesis. We report herein a facile electrochemical migratory cyclization of N-acylsulfonamides to access a diverse array of benzoxathiazine dioxides. The inclusion of electrochemistry is crucial for realizing such a novel transformation, which is substantiated both by the experiments and density-functional-theory calculations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hao-Kuan Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hong Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Jiang HM, Sun Q, Jiang JP, Qin JH, Ouyang XH, Song RJ. Copper‐Catalyzed Oxidative 1,2‐Alkylarylation of Styrenes with Unactivated C(sp3)‐H Alkanes and Electron‐Rich Aromatics via C(sp3)‐H/C(sp2)‐H Functionalization. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Shi Z, Li Y, Li N, Wang W, Lu H, Yan H, Yuan Y, Zhu J, Ye K. Electrochemical Migratory Cyclization of
N
‐Acylsulfonamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Wei‐Zhen Wang
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hao‐Kuan Lu
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ke‐Yin Ye
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
6
|
Xu M, Cao W, Xu X, Ji S. Visible‐Light‐Promoted Radical Cyclization and N−N Bond Cleavage Relay of N‐Aminopyridinium Ylides for Access to 2,3‐Difunctionalized Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng‐Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Wen‐Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Xiao‐Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
- Innovation Center for Chemical Science Soochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
- Suzhou Baolidi Functional Materials Research Institute Suzhou 215144 People's Republic of China
| |
Collapse
|
7
|
Guo K, Gu C, Li Y, Xie X, Zhang H, Chen K, Zhu Y. Photoredox Catalyzed Trifluoromethyl Radical‐Triggered Trifunctionalization of 5‐Hexenenitriles
via
Cyano Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Chen Gu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
8
|
Whalley DM, Seayad J, Greaney MF. Truce–Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal‐Free Arylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Whalley
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Michael F. Greaney
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
9
|
Whalley DM, Seayad J, Greaney MF. Truce-Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal-Free Arylation. Angew Chem Int Ed Engl 2021; 60:22219-22223. [PMID: 34370898 DOI: 10.1002/anie.202108240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/30/2023]
Abstract
The ring-opening of 3-aminocyclobutanone oximes enables easy generation of primary alkyl radicals, capable of undergoing an unprecedented strain-release, desulfonylative radical Truce-Smiles rearrangement, providing divergent access to valuable 1,3 diamines and unnatural β-amino acids. Characterized by mild conditions and wide scope of migrating species, this protocol allows the modular assembly of sp3 -aryls under transition metal-free, room-temperature conditions.
Collapse
Affiliation(s)
- David M Whalley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
10
|
Zhang H, Wang M, Wu X, Zhu C. Heterocyclization Reagents for Rapid Assembly of N‐Fused Heteroarenes from Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Min Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
Huynh M, De Abreu M, Belmont P, Brachet E. Spotlight on Photoinduced Aryl Migration Reactions. Chemistry 2020; 27:3581-3607. [DOI: 10.1002/chem.202003507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Marie Huynh
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Maxime De Abreu
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Philippe Belmont
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Etienne Brachet
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| |
Collapse
|
12
|
Zhang H, Wang M, Wu X, Zhu C. Heterocyclization Reagents for Rapid Assembly of N-Fused Heteroarenes from Alkenes. Angew Chem Int Ed Engl 2020; 60:3714-3719. [PMID: 33140527 DOI: 10.1002/anie.202013089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 12/17/2022]
Abstract
N-Fused heterocycles are of particular use and upmost importance in multiple fields. Herein, we disclose a conceptually new approach for the rapid assembly of N-fused heteroarenes from alkenes. A portfolio of strategically designed heterocyclization reagents are readily prepared for the cascade reaction. A plethora of N-fused heteroarenes including seven types of heterocyclic core are furnished. The protocol features a broad functional-group compatibility and high product diversity, and provides a practical tool for late-stage heteroarene elaboration.
Collapse
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Min Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China.,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
13
|
Chen Zhu. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Chen Zhu. Angew Chem Int Ed Engl 2020; 59:21279. [DOI: 10.1002/anie.202010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020; 59:17511-17516. [DOI: 10.1002/anie.202008435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
16
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
17
|
Zhang Y, Ren Z, Liu Y, Wang Z, Li Z. Fluoroalkylation of Allylic Alcohols with Concomitant (Hetero)aryl Migration: Access to Fluoroalkylated Ketones and Evaluation of Antifungal Action against
Magnaporthe grisea. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanhu Zhang
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Ziyang Ren
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road 510006 Guangzhou China
| | - Zhentao Wang
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong China
| | - Zhaodong Li
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| |
Collapse
|
18
|
Qi J, Zhang F, Jin J, Zhao Q, Li B, Liu L, Wang Y. New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jing Qi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Feng‐Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Ji‐Kang Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Qiang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Lin‐Xuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yi‐Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS Hefei 230026 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
Lee K, Lee S, Kim N, Kim S, Hong S. Visible‐Light‐Enabled Trifluoromethylative Pyridylation of Alkenes from Pyridines and Triflic Anhydride. Angew Chem Int Ed Engl 2020; 59:13379-13384. [DOI: 10.1002/anie.202004439] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Kangjae Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seojin Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Namhoon Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
20
|
Lee K, Lee S, Kim N, Kim S, Hong S. Visible‐Light‐Enabled Trifluoromethylative Pyridylation of Alkenes from Pyridines and Triflic Anhydride. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004439] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kangjae Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seojin Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Namhoon Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
21
|
Qi J, Zhang FL, Jin JK, Zhao Q, Li B, Liu LX, Wang YF. New Radical Borylation Pathways for Organoboron Synthesis Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:12876-12884. [PMID: 32232933 DOI: 10.1002/anie.201915619] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Indexed: 01/20/2023]
Abstract
Radical borylation using N-heterocyclic carbene (NHC)-BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo- and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC-boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC-boryl radicals enabled by photoredox catalysis. NHC-boryl radicals are generated via a single-electron oxidation and subsequently undergo cross-coupling with the in-situ-generated radical anions to yield gem-difluoroallylboronates. A photoredox-catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC-boryl radicals through a single-electron-transfer pathway.
Collapse
Affiliation(s)
- Jing Qi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ji-Kang Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lin-Xuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
23
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020; 59:8195-8202. [DOI: 10.1002/anie.201915837] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
24
|
Wang M, Zhang H, Liu J, Wu X, Zhu C. Radical Monofluoroalkylative Alkynylation of Olefins by a Docking–Migration Strategy. Angew Chem Int Ed Engl 2019; 58:17646-17650. [DOI: 10.1002/anie.201910514] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Min Wang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
25
|
Wang M, Zhang H, Liu J, Wu X, Zhu C. Radical Monofluoroalkylative Alkynylation of Olefins by a Docking–Migration Strategy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
26
|
Ruzi R, Ma J, Yuan X, Wang W, Wang S, Zhang M, Dai J, Xie J, Zhu C. Deoxygenative Arylation of Carboxylic Acids by Aryl Migration. Chemistry 2019; 25:12724-12729. [DOI: 10.1002/chem.201903816] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rehanguli Ruzi
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Junyang Ma
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 P. R. China
| | - Wenliang Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Shanshan Wang
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 P. R. China
| | - Muliang Zhang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Jie Dai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Jin Xie
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Chengjian Zhu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
- State Key Laboratory of Organometallic ChemistryInstitute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
27
|
Zhao B, Li Z, Wu Y, Wang Y, Qian J, Yuan Y, Shi Z. An Olefinic 1,2‐Boryl‐Migration Enabled by Radical Addition: Construction of
gem
‐Bis(boryl)alkanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zexian Li
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yixiao Wu
- College of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Yandong Wang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jiasheng Qian
- College of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Yu Yuan
- College of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
28
|
Zhao B, Li Z, Wu Y, Wang Y, Qian J, Yuan Y, Shi Z. An Olefinic 1,2-Boryl-Migration Enabled by Radical Addition: Construction of gem-Bis(boryl)alkanes. Angew Chem Int Ed Engl 2019; 58:9448-9452. [PMID: 31058401 DOI: 10.1002/anie.201903721] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Indexed: 12/11/2022]
Abstract
A series of in situ formed alkenyl diboronate complexes from alkenyl Grignard reagents (commercially available or prepared from alkenyl bromides and Mg) with B2 Pin2 (bis(pinacolato)diboron) react with diverse alkyl halides by a Ru photocatalyst to give various gem-bis(boryl)alkanes. Alkyl radicals add efficiently to the alkenyl diboronate complexes, and the adduct radical anions undergo radical-polar crossover, specifically, a 1,2-boryl-anion shift from boron to the α-carbon sp2 center. This transformation shows good functional-group compatibility and can serve as a powerful synthetic tool for late-stage functionalization in complex compounds. Measurements of the quantum yield reveal that a radical-chain mechanism is operative in which the alkenyl diboronates acts as reductive quencher for the excited state of the photocatalyst.
Collapse
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zexian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yixiao Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiasheng Qian
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
29
|
Zheng M, Li G, Lu H. Photoredox- or Metal-Catalyzed in Situ SO2-Capture Reactions: Synthesis of β-Ketosulfones and Allylsulfones. Org Lett 2019; 21:1216-1220. [DOI: 10.1021/acs.orglett.9b00201] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Wu S, Wu X, Wang D, Zhu C. Regioselective Vinylation of Remote Unactivated C(sp3)−H Bonds: Access to Complex Fluoroalkylated Alkenes. Angew Chem Int Ed Engl 2018; 58:1499-1503. [DOI: 10.1002/anie.201812927] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/03/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Dongping Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
31
|
Wu S, Wu X, Wang D, Zhu C. Regioselective Vinylation of Remote Unactivated C(sp3)−H Bonds: Access to Complex Fluoroalkylated Alkenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Dongping Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|