1
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Pradhan TR, Kyoon Park J. Chemoselective Coupling of π-Systems to Access Metallated 1,4- or 1,5-Skipped Dienes in Multicomponent Reactions. Chemistry 2022; 28:e202202120. [PMID: 36094297 DOI: 10.1002/chem.202202120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Integrating distinct unsaturated C-C systems while simultaneously installing metallic groups has been significantly challenging to execute in a multicomponent reaction. Therefore, designing a suitable mechanistic pathway that provides the required reactivity and selectivity for target C-C bonds with metallic reagents to ensure successful coupling is the key to success. Copper-catalyzed borylallylation and silylallylation have emerged as the most efficient strategies for assembling borylated/silylated skipped (1,4 or 1,5) dienes by catalytically combining an organocopper intermediate with allyl electrophiles. However, reactions involving interelemental reagents (e. g., [Si]-[B]) to accomplish intermolecular atom-economic couplings have not been studied thoroughly. Therefore, to aid the development of new transformations in this research area, this article attempts to include all precedents, including recent studies by the authors. The present Concept article may be helpful for researchers working in this area as it provides a basic conceptual framework.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 46241, Busan, Korea
| | - Jin Kyoon Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 46241, Busan, Korea
| |
Collapse
|
3
|
Berger M, Carboni D, Melchiorre P. Photochemical Organocatalytic Regio- and Enantioselective Conjugate Addition of Allyl Groups to Enals. Angew Chem Int Ed Engl 2021; 60:26373-26377. [PMID: 34695283 PMCID: PMC9298816 DOI: 10.1002/anie.202111648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Indexed: 11/18/2022]
Abstract
We report the first catalytic enantioselective conjugate addition of allyl groups to α,β‐unsaturated aldehydes. The chemistry exploits the visible‐light‐excitation of chiral iminium ions to activate allyl silanes towards the formation of allylic radicals, which are then intercepted stereoselectively. The underlying radical mechanism of this process overcomes the poor regio‐ and chemoselectivity that traditionally affects the conjugate allylation of enals proceeding via polar pathways. We also demonstrate how this organocatalytic strategy could selectively install a valuable prenyl fragment at the β‐carbon of enals.
Collapse
Affiliation(s)
- Martin Berger
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Davide Carboni
- ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICREA-Passeig Lluís Companys 23, 08010, Barcelona, Spain.,ICIQ-Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
4
|
Berger M, Carboni D, Melchiorre P. Photochemical Organocatalytic Regio‐ and Enantioselective Conjugate Addition of Allyl Groups to Enals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Martin Berger
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Davide Carboni
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICREA—Passeig Lluís Companys 23 08010 Barcelona Spain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
5
|
Shan C, Dai K, Zhao M, Xu Y. Copper Catalyzed Protosilylation/Protoborylation of
gem
‐Difluoroallenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cui‐Cui Shan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui P. R. China 230026
| | - Kai‐Yang Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui P. R. China 230026
| | - Meng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui P. R. China 230026
| | - Yun‐He Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui P. R. China 230026
| |
Collapse
|
6
|
Cui Q, Tian ZY, Yu ZX. Rhodium(I)-Catalyzed Three-Component [4+2+1] Cycloaddition of Two Vinylallenes and CO. Chemistry 2021; 27:5638-5641. [PMID: 33377219 DOI: 10.1002/chem.202005443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Transition metal-catalyzed [4+2+1] reactions of dienes (or diene derivatives such as vinylallenes), alkynes/alkenes, and CO (or carbenes) are expected to be the most straightforward approach to synthesize challenging seven-membered ring compounds, but so far only limited successes have been realized. Here, an unexpected three-component [4+2+1] reaction between two vinylallenes and CO was discovered to give highly functionalized tropone derivatives under mild conditions, where one vinylallene acts as a C4 synthon, the other vinylallene as a C2 synthon, and CO as a C1 synthon. It was proposed that this reaction occurred via oxidative cyclization of the diene part of one vinylallene molecule, followed by insertion of the terminal alkene part of the allene moiety in another vinylallene, into the Rh-C bond of five-membered rhodacycle. Then, CO insertion and reductive elimination gave the [4+2+1] cycloadduct. Further experimental exploration of why ene/yne-vinylallenes and CO gave monocyclic tropone derivatives instead of 6/7-bicyclic ring products were reported here.
Collapse
Affiliation(s)
- Qi Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
8
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
9
|
Tang Q, Fu K, Ruan P, Dong S, Su Z, Liu X, Feng X. Asymmetric Catalytic Formal 1,4‐Allylation of β,γ‐Unsaturated α‐Ketoesters: Allylboration/Oxy‐Cope Rearrangement. Angew Chem Int Ed Engl 2019; 58:11846-11851. [DOI: 10.1002/anie.201905533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Qiong Tang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Kai Fu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peiran Ruan
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
10
|
Tang Q, Fu K, Ruan P, Dong S, Su Z, Liu X, Feng X. Asymmetric Catalytic Formal 1,4‐Allylation of β,γ‐Unsaturated α‐Ketoesters: Allylboration/Oxy‐Cope Rearrangement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiong Tang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Kai Fu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peiran Ruan
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
11
|
Feng J, Oestreich M. Tertiary α‐Silyl Alcohols by Diastereoselective Coupling of 1,3‐Dienes and Acylsilanes Initiated by Enantioselective Copper‐Catalyzed Borylation. Angew Chem Int Ed Engl 2019; 58:8211-8215. [DOI: 10.1002/anie.201903174] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jian‐Jun Feng
- Institut für Chemie Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für Chemie Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
12
|
Feng J, Oestreich M. Tertiäre α‐Silylalkohole mittels diastereoselektiver Kupplung von 1,3‐Dienen und Acylsilanen, eingeleitet durch enantioselektive kupferkatalysierte Borylierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jian‐Jun Feng
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|