1
|
Nagtilak PJ, Mane MV, Prasad S, Cavallo L, Tantillo DJ, Kapur M. Merging Rh-Catalyzed C-H Functionalization and Cascade Cyclization to Enable Propargylic Alcohols as Three-Carbon Synthons. Chemistry 2023; 29:e202203055. [PMID: 36197081 DOI: 10.1002/chem.202203055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.
Collapse
Affiliation(s)
- Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manoj V Mane
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnatak, 562112, India
| | - Supreeth Prasad
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Verma SK, Punji B. Manganese-Catalyzed C(sp2)-H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chem Asian J 2022; 17:e202200103. [PMID: 35289105 DOI: 10.1002/asia.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Selective C(sp 2 ) - H bond alkylation of indoline, carbazole and (2-pyridinyl)arenes with unactivated alkyl bromides is achieved using MnBr 2 catalyst in the absence of an external ligand. The alkylation uses a simple LiHMDS base and avoids the necessity of Grignard reagent, unlike other Mn-catalyzed C - H functionalization. This reaction proceeded either through a five- or a less-favored six-membered metallacycle, and tolerated diverse functionalities, including alkenyl, alkynyl, silyl, aryl ether, pyrrolyl, indolyl, carbazolyl and alkyl bearing fatty alcohol and polycyclic-steroid moieties. Alkylation follows a single electron transfer (SET) pathway involving 1e oxidative addition of alkyl bromide and a rate-limiting C-H metalation.
Collapse
Affiliation(s)
- Suryadev K Verma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr. Homi Bhabha Road, Pune, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
3
|
Sar S, Das R, Sen S. Blue LED Induced Manganese (I) Catalysed Direct C2−H Activation of Pyrroles with Aryl Diazoesters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| |
Collapse
|
4
|
Xu X, Luo C, Zhao H, Pan Y, Zhang X, Li J, Xu L, Lei M, Walsh PJ. Rhodium(III)-Catalyzed C-H Bond Functionalization of 2-Pyridones with Alkynes: Switchable Alkenylation, Alkenylation/Directing Group Migration and Rollover Annulation. Chemistry 2021; 27:8811-8821. [PMID: 33871117 DOI: 10.1002/chem.202101074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Cp*Rh(III)-catalyzed chelation-assisted direct C-H bond functionalization of 1-(2-pyridyl)-2-pyridones with internal alkynes that can be controlled to give three different products in good yields has been realized. Depending on the reaction conditions, solvents and additives, the reaction pathway can be switched between alkenylation, alkenylation/directing group migration and rollover annulation. These reaction manifolds allow divergent access to a variety of valuable C6-alkenylated 1-(2-pyridyl)-2-pyridones, (Z)-6-(1,2-diaryl-2-(pyridin-2-yl)vinyl)pyridin-2(1H)-ones and 10H-pyrido[1,2-a][1,8]naphthyridin-10-ones from the same starting materials. These protocols exhibit excellent regio- and stereoselectivity, broad substrate scope, and good tolerance of functional groups. A combination of experimental and computational approaches have been employed to uncover the key mechanistic features of these reactions.
Collapse
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenguang Luo
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.,Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xin Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Jiajie Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
5
|
da Silva Júnior EN, de Carvalho RL, Almeida RG, Rosa LG, Fantuzzi F, Rogge T, Costa PMS, Pessoa C, Jacob C, Ackermann L. Ruthenium(II)-Catalyzed Double Annulation of Quinones: Step-Economical Access to Valuable Bioactive Compounds. Chemistry 2020; 26:10981-10986. [PMID: 32212283 DOI: 10.1002/chem.202001434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Double ruthenium(II)-catalyzed alkyne annulations of quinones were accomplished. Thus, a strategy is reported that provides step-economical access to valuable quinones with a wide range of applications. C-H/N-H activations for alkyne annulations of naphthoquinones provided challenging polycyclic quinoidal compounds by forming four new bonds in one step. The singular power of the thus-obtained compounds was reflected by their antileukemic activity.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L de Carvalho
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Luisa G Rosa
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pedro M S Costa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, 66123, Saarbrücken, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Potsdamer Strasse 58, 10785, Berlin, Germany
| |
Collapse
|
6
|
Jia T, Wang C. Manganese‐Catalyzed
ortho‐
Alkenylation of Aromatic Amidines with Alkynes via C−H Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Teng Jia
- Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|