1
|
Lei J, Qi S, Yu X, Gao X, Yang K, Zhang X, Cheng M, Bai B, Feng Y, Lu M, Wang Y, Li H, Yu G. Development of Mannosylated Lipid Nanoparticles for mRNA Cancer Vaccine with High Antigen Presentation Efficiency and Immunomodulatory Capability. Angew Chem Int Ed Engl 2024; 63:e202318515. [PMID: 38320193 DOI: 10.1002/anie.202318515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Insufficient accumulation of lipid nanoparticles (LNPs)-based mRNA vaccines in antigen presenting cells remains a key barrier to eliciting potent antitumor immune responses. Herein, we develop dendritic cells (DCs) targeting LNPs by taking advantage of mannose receptor-mediated endocytosis. Efficient delivery of mRNA to DCs is achieved in vitro and in vivo utilizing the sweet LNPs (STLNPs-Man). Intramuscular injection of mRNA vaccine (STLNPs-Man@mRNAOVA ) results in a four-fold higher uptake by DCs in comparison with commercially used LNPs. Benefiting from its DCs targeting ability, STLNPs-Man@mRNAOVA significantly promotes the antitumor performances, showing a comparable therapeutic efficacy by using one-fifth of the injection dosage as the vaccine prepared from normal LNPs, thus remarkably avoiding the side effects brought by conventional mRNA vaccines. More intriguingly, STLNPs-Man@mRNAOVA exhibits the ability to downregulate the expression of cytotoxic T-lymphocyte-associated protein 4 on T cells due to the blockade of CD206/CD45 axis, showing brilliant potentials in promoting antitumor efficacy combined with immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiaomin Gao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xueyan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Meiqi Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Meixin Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yangfan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Hongjian Li
- School of Medicine, Tsinghua University, 100084, Beijing, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- School of Medicine, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
2
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
3
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart
131
I‐Labeled Self‐Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Kai Feng
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Wenyu Wu
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Xiuping Han
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Guoqiang Shao
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
4
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart 131 I-Labeled Self-Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:21884-21889. [PMID: 34374188 DOI: 10.1002/anie.202107231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Stimulating photosensitizers (PS) by Cerenkov radiation (CR) can overcome the light penetration limitation in traditional photodynamic therapy. However, separate injection of radiopharmaceuticals and PS cannot guarantee their efficient interaction in tumor areas, while co-delivery of radionuclides and PS face the problem of nonnegligible phototoxicity in normal tissues. Here, we describe a 131 I-labeled smart photosensitizer, composed of pyropheophorbide-a (photosensitizer), a diisopropylamino group (pH-sensitive group), an 131 I-labeled tyrosine group (CR donor), and polyethylene glycol, which can self-assemble into nanoparticles (131 I-sPS NPs). The 131 I-sPS NPs showed low phototoxicity in normal tissues due to aggregation-caused quenching effect, but could self-produce reactive oxygen species in tumor sites upon disassembly. Upon intravenous injection, 131 I-sPS NPs showed great tumor inhibition capability in subcutaneous 4T1-tumor-bearing Balb/c mice and orthotopic VX2 liver tumor bearing rabbits. We believed 131 I-sPS NPs could expand the application of CR and provide an effective strategy for deep tumor theranostics.
Collapse
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|