1
|
Wang S, Ma Y, Ma C, Liu K, Huo Z, Shang Y. A supramolecular nanofiber formed by enzyme-instructed self-assembly for SKBR-3 cell selective inhibition. Chem Asian J 2022; 17:e202200301. [PMID: 35510693 DOI: 10.1002/asia.202200301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Cell-targeted peptides are recommended for precision cancer treatment due to their comparable targeting properties, small molecular size and good biocompatibility. However, unpredictable bioactivity, low penetration rate and poor stability greatly limit its efficacy. Supramolecular self-assembly based on synthetic peptide has great potential to solve related problems and achieve better therapeutic effects. Herein, we report and compare the effects of two different assembly pathway, heating-cooling and enzyme instruction, on the penetrability of SKBR-3 cell targeted peptides. It was found that enzyme-instructed self-assembly (EISA) resulted in hydrogels composed of uniform supramolecular nanofibers, whereas heating-cooling resulted in solutions and precipitations composed of slightly different nanoparticles. The nanofibers formed by EISA showed enhanced cellular uptake (2.54 μM), which was significantly higher than the 1.06 μM of the nanoparticles formed by temperature regulation. Thus, EISA is a promising strategy to improve the cell penetration rate of targeted peptides, and could provide a better solution for precision cancer treatment.
Collapse
Affiliation(s)
- Shijiang Wang
- Shandong Cancer Hospital and Institute, Department of Radiotherapy, CHINA
| | - Yan Ma
- Shandong Cancer Hospital and Institute, Department of Gastrointestinal oncology, CHINA
| | - Changsheng Ma
- Shandong Cancer Hospital and Institute, Department of Radiotherapy, CHINA
| | - Kai Liu
- Shandong Cancer Hospital and Institute, Department of Gastrointestinal oncology, CHINA
| | - Zhijun Huo
- Shandong Cancer Hospital and Institute, Breast Cancer Center, CHINA
| | - Yuna Shang
- Tianjin Normal University, College of Chemistry, 393# Binshuixi road, 300387, Tianjin, CHINA
| |
Collapse
|
2
|
Yang S, Chang Y, Hazoor S, Brautigam C, Foss FW, Pan Z, Dong H. Modular Design of Supramolecular Ionic Peptides with Cell-Selective Membrane Activity. Chembiochem 2021; 22:3164-3168. [PMID: 34506664 PMCID: PMC11261884 DOI: 10.1002/cbic.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
The rational design of materials with cell-selective membrane activity is an effective strategy for the development of targeted molecular imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme-mediated molecular transformation followed by supramolecular assembly to form nanofibers in which cationic clusters are presented on a rigid β-sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self-assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramolecular nanomaterials with emerging membrane activity for a range of disease targeted molecular imaging and therapy applications.
Collapse
Affiliation(s)
- Su Yang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chad Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - He Dong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
3
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells*. Angew Chem Int Ed Engl 2021; 60:12796-12801. [PMID: 33783926 PMCID: PMC8159897 DOI: 10.1002/anie.202102601] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Indexed: 01/01/2023]
Abstract
Changing an oxygen atom of the phosphoester bond in phosphopeptides by a sulfur atom enables instantly targeting Golgi apparatus (GA) and selectively killing cancer cells by enzymatic self-assembly. Specifically, conjugating cysteamine S-phosphate to the C-terminal of a self-assembling peptide generates a thiophosphopeptide. Being a substrate of alkaline phosphatase (ALP), the thiophosphopeptide undergoes rapid ALP-catalyzed dephosphorylation to form a thiopeptide that self-assembles. The thiophosphopeptide enters cells via caveolin-mediated endocytosis and macropinocytosis and instantly accumulates in GA because of dephosphorylation and formation of disulfide bonds in Golgi by themselves and with Golgi proteins. Moreover, the thiophosphopeptide potently and selectively inhibits cancer cells (HeLa) with the IC50 (about 3 μM), which is an order of magnitude more potent than that of the parent phosphopeptide.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
4
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weiyi Tan
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qiuxin Zhang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqing Wang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Meihui Yi
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
5
|
He H, Guo J, Lin X, Xu B. Enzyme-Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:9330-9334. [PMID: 32119754 PMCID: PMC7269854 DOI: 10.1002/anie.202000983] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 01/11/2023]
Abstract
Presently, little is known of how the inter-organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter-organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l- to d-aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme-instructed self-assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter-organelle communication in cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xingyi Lin
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
6
|
He H, Guo J, Lin X, Xu B. Enzyme‐Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqi Guo
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Xinyi Lin
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|