1
|
Hou H, Guo S, Shen X, Chen C, Chen X, Yu H, Han Y, Sun Q, Zhu S. Site-Specific Radical Alkylation of Aryl Cyanide: Visible-Light, Photoredox-Catalyzed, Three-Component Arylalkylation of [1.1.1]Propellane. Org Lett 2024; 26:7769-7773. [PMID: 39230003 DOI: 10.1021/acs.orglett.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report herein a three-component radical arylalkylation of [1.1.1]propellane toward the synthesis of aryl-substituted bicyclo[1.1.1]pentane derivatives. The use of electron-deficient aryl cyanide as an aryl group source not only reduces the energy barrier of the arylation of the nucleophilic alkyl radical species, but also suppresses the electrophilic Friedel-Crafts alkylation process, enabling the present site-selective arylalkylation.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shengkun Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chengjun Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium-Catalyzed Stagewise Strain-Release-Driven C-C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022; 61:e202200052. [PMID: 35332648 DOI: 10.1002/anie.202200052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed chemoselective coupling of readily available bicyclo[1.1.1]pentanyl alcohols (BCP-OH) with various halides is reported, which offers expedient approaches to a wide range of cyclobutanone and β,γ-enone skeletons via single or double C-C activation. The chemistry shows a broad substrate scope in terms of both the range of BCP-OH and halides including a series of natural product derivatives. Moreover, dependency of reaction chemodivergence on base additive has been investigated through experimental and density functional theory (DFT) studies, which is expected to significantly enrich the reaction modes and increase the synthetic potential of BCP-OH in preparing more complex molecules.
Collapse
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yinan Ai
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Chunying Duan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yue Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium‐Catalyzed Stagewise Strain‐Release‐Driven C−C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yinan Ai
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Chunying Duan
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yue Ma
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
4
|
Livesley S, Sterling AJ, Robertson CM, Goundry WRF, Morris JA, Duarte F, Aïssa C. Electrophilic Activation of [1.1.1]Propellane for the Synthesis of Nitrogen-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202111291. [PMID: 34705316 PMCID: PMC9299141 DOI: 10.1002/anie.202111291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 01/22/2023]
Abstract
Strategies commonly used for the synthesis of functionalised bicyclo[1.1.1]pentanes (BCP) rely on the reaction of [1.1.1]propellane with anionic or radical intermediates. In contrast, electrophilic activation has remained a considerable challenge due to the facile decomposition of BCP cations, which has severely limited the applications of this strategy. Herein, we report the electrophilic activation of [1.1.1]propellane in a halogen bond complex, which enables its reaction with electron-neutral nucleophiles such as anilines and azoles to give nitrogen-substituted BCPs that are prominent motifs in drug discovery. A detailed computational analysis indicates that the key halogen bonding interaction promotes nucleophilic attack without sacrificing cage stabilisation. Overall, our work rehabilitates electrophilic activation of [1.1.1]propellane as a valuable strategy for accessing functionalised BCPs.
Collapse
Affiliation(s)
- Sarah Livesley
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Alistair J. Sterling
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Craig M. Robertson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - William R. F. Goundry
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaMacclesfieldSK10 2NAUK
| | - James A. Morris
- SyngentaInternational Research CentreBracknellBerkshireRG42 6EYUK
| | - Fernanda Duarte
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christophe Aïssa
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
5
|
Livesley S, Sterling AJ, Robertson CM, Goundry WRF, Morris JA, Duarte F, Aïssa C. Electrophilic Activation of [1.1.1]Propellane for the Synthesis of Nitrogen‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sarah Livesley
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Alistair J. Sterling
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Craig M. Robertson
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - William R. F. Goundry
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Macclesfield SK10 2NA UK
| | - James A. Morris
- Syngenta International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Fernanda Duarte
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Christophe Aïssa
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
6
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
7
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
8
|
Regio‐controllable Cobalt‐Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Knochel P, Djukanovic D, Heinz B, Mandrelli F, Mostarda S, Filipponi P, Martin B. Continuous Flow Acylation of (Hetero)aryllithiums with Polyfunctional N,N-Dimethylamides and Tetramethylurea in Toluene. Chemistry 2021; 27:13977-13981. [PMID: 34387898 PMCID: PMC8519161 DOI: 10.1002/chem.202102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/05/2022]
Abstract
The continuous flow reaction of various aryl or heteroaryl bromides in toluene in the presence of THF (1.0 equiv) with sec -BuLi (1.1 equiv) provided at 25 °C within 40 sec the corresponding aryllithiums which were acylated with various functionalized N,N-dimethylamides including easily enolizable amides at -20 °C within 27 sec, producing highly functionalized ketones in 48-90% yield (36 examples). This method was well suited for the preparation of α-chiral ketones such as naproxene and ibuprofen derived ketones with 99% ee . A one-pot stepwise bis-addition of two different lithium organometallics to 1,1,3,3-tetramethyurea (TMU) provided unsymmetrical ketones in 69-79% yield (9 examples).
Collapse
Affiliation(s)
- Paul Knochel
- Ludwig-Maximilians-Universitat Munchen, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| | - Dimitrije Djukanovic
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Benjamin Heinz
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | | | - Serena Mostarda
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Paolo Filipponi
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Benjamin Martin
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| |
Collapse
|
10
|
Cheng Z, Guo J, Sun Y, Zheng Y, Zhou Z, Lu Z. Regio-controllable Cobalt-Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021; 60:22454-22460. [PMID: 34347353 DOI: 10.1002/anie.202109089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Regiodivergent addition reactions provide straightforward and atom-economic approaches to access different regioisomers. However, the regio-chemistry control to access all the possible results is still challenging especially for the reaction involving multiple addition steps. Herein, we reported regio-controllable cobalt-catalyzed sequential hydrosilylation/hydroboration of arylacetylenes, delivering all the possible regio-outcomes with high regioselectivities (up to >20/1 rr for all the cases). Each regioisomer of value-added silylboronates could be efficiently and regioselectively obtained from the same materials. The adjustment of the ligands of cobalt catalysts combined with dual catalysis relay strategy is the key to achieve regio-chemistry control. This regio-controllable research might inspire the exploration of the diversity-oriented synthesis that involves multiple additions and provide full sets of regioisomers of other synthetic useful molecules.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yushan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhehong Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Matsunaga T, Kanazawa J, Ichikawa T, Harada M, Nishiyama Y, Duong NT, Matsumoto T, Miyamoto K, Uchiyama M. α‐Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomohiro Ichikawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center and SPring-8 Center RIKEN, Tsurumi Yokohama Kanagawa 230-0045 Japan
- JEOL RESONANCE Inc. 3-1-2 Musashino, Akishima Tokyo 196-8558 Japan
| | - Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center and SPring-8 Center RIKEN, Tsurumi Yokohama Kanagawa 230-0045 Japan
| | - Takashi Matsumoto
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima Tokyo 196-8666 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
- Research Initiative for Supra-Materials (RISM) Shinshu University 3-15-1 Tokida, Ueda Nagano 386-8567 Japan
| |
Collapse
|
12
|
Matsunaga T, Kanazawa J, Ichikawa T, Harada M, Nishiyama Y, Duong NT, Matsumoto T, Miyamoto K, Uchiyama M. α-Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane. Angew Chem Int Ed Engl 2021; 60:2578-2582. [PMID: 33205884 DOI: 10.1002/anie.202014997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/15/2022]
Abstract
The bicyclo[1.1.1]pentane (BCP) scaffold is useful in medicinal chemistry, and many protocols are available for synthesizing BCP derivatives from [1.1.1]propellane. Here, we report (1) the α-cyclodextrin (α-CD) encapsulation of BCP derivatives, affording a stable, readily storable material from which BCPs can be easily and quantitatively recovered and (2) new and simple protocols for deiodination reaction of 1,3-diiodo BCP to afford [1.1.1]propellane in protic/aprotic/polar/non-polar solvents. The combination of these methodologies enables simple, on-demand preparation of [1.1.1]propellane in various solvents under mild conditions from α-CD capsules containing 1,3-diiodo BCP.
Collapse
Affiliation(s)
- Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Ichikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center and SPring-8 Center, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center and SPring-8 Center, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Matsumoto
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
13
|
Takeda M, Nagao K, Ohmiya H. Transition‐Metal‐Free Cross‐Coupling by Using Tertiary Benzylic Organoboronates. Angew Chem Int Ed Engl 2020; 59:22460-22464. [DOI: 10.1002/anie.202010251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Mitsutaka Takeda
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
14
|
Takeda M, Nagao K, Ohmiya H. Transition‐Metal‐Free Cross‐Coupling by Using Tertiary Benzylic Organoboronates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mitsutaka Takeda
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
15
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
16
|
Bär RM, Gross PJ, Nieger M, Bräse S. Sodium Bicyclo[1.1.1]pentanesulfinate: A Bench-Stable Precursor for Bicyclo[1.1.1]pentylsulfones and Bicyclo- [1.1.1]pentanesulfonamides. Chemistry 2020; 26:4242-4245. [PMID: 31922305 PMCID: PMC7187227 DOI: 10.1002/chem.202000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 01/09/2023]
Abstract
Herein, we present the synthesis of the bench-stable sodium bicyclo[1.1.1]pentanesulfinate (BCP-SO2 Na) and its application in the synthesis of bicyclo[1.1.1]pentyl (BCP) sulfones and sulfonamides. The salt can be obtained in a four-step procedure from commercially available precursors in multigram scale without the need for column chromatography or crystallization. Sulfinates are known to be useful precursors in radical and nucleophilic reactions and are widely used in medicinal chemistry. This building block enables access to BCP sulfones and sulfonamides avoiding the volatile [1.1.1]propellane which is favorable for the extension of SAR studies. Further, BCP-SO2 Na enables the synthesis of products that were not available with previous methods. A chlorination of BCP-SO2 Na and subsequent reaction with a Grignard reagent provides a new route to BCP sulfoxides. Several products were analyzed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Robin M. Bär
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Patrick J. Gross
- Boehringer Ingelheim Pharma GmbH & Co. KGBirkendorfer Straße 6588397Biberach an der RißGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems–FMSKarlsruhe Institute of Technology (KIT)Herman-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|