Chen C, Zhou J, Chen J, Liu H. Advances in DNA Supramolecular Hydrogels for Tissue Engineering.
Macromol Biosci 2022;
22:e2200152. [PMID:
35917391 DOI:
10.1002/mabi.202200152]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Indexed: 01/15/2023]
Abstract
Deoxyribonucleic acid (DNA) is a biological macromolecule that plays a genetic role in cells. DNA molecules with specific recognition, self-assembly capabilities, and sequence programmability have become an excellent construction material for micro- and nanostructures. Based on DNA self-assembly technology, a series of molecular devices and materials are constructed. Among them, DNA hydrogels with the advantages of good biocompatibility, biodegradability, and containing designable stimuli-responsive units have attracted much attention. This review introduces the formation strategy of DNA supramolecular hydrogels, and focuses on its applications in tissue engineering, including cell encapsulation, cell culture, cell capture and release, wound dressings, and tissue growth. The unique properties and application prospects of DNA supramolecular hydrogels in tissue engineering are also discussed.
Collapse