1
|
Vodyashkin AA, Sergorodceva AV, Kezimana P, Stanishevskiy YM. Metal-Organic Framework (MOF)-A Universal Material for Biomedicine. Int J Mol Sci 2023; 24:7819. [PMID: 37175523 PMCID: PMC10178275 DOI: 10.3390/ijms24097819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Antonina V. Sergorodceva
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| |
Collapse
|
2
|
López-Cabrelles J, Miguel-Casañ E, Esteve-Rochina M, Andres-Garcia E, Vitórica-Yrezábal IJ, Calbo J, Mínguez Espallargas G. Multivariate sodalite zeolitic imidazolate frameworks: a direct solvent-free synthesis. Chem Sci 2022; 13:842-847. [PMID: 35173949 PMCID: PMC8768878 DOI: 10.1039/d1sc04779e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this topology is the lowest in energy upon ligand mixing.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - María Esteve-Rochina
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | | | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | | |
Collapse
|
3
|
Karve VV, Schertenleib T, Espín J, Trukhina O, Zhang X, Campins MX, Kitao T, Avalos CE, Uemura T, Queen WL. Hybridization of Synthetic Humins with a Metal-Organic Framework for Precious Metal Recovery and Reuse. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60027-60034. [PMID: 34898181 DOI: 10.1021/acsami.1c19255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of synthetic strategies used to functionalize MOFs with polymers is rapidly growing; this stems from the knowledge that non-native polymeric guests can significantly boost MOF performance in a number of desirable applications. The current work presents a scalable and solid-state method for MOF/polymer composite production. This simple method constitutes mixing a MOF powder, namely, Fe-BTC (BTC = 1,3,5-benzenetricarboxylate), with a biomass-derived solid monomer, 5-hydroxymethylfurfural (HMF), and subsequently heating the solids; the latter promotes both solid-state diffusion of HMF into the MOF and the formation of polymeric humin species with a high density of accessible hydroxyl functionality within the MOF pore. The resulting composite, Fe-BTC/humin, was found to selectively extract Ag+ ions from laundry wastewater. Subsequent reduction of the Ag+ species yields a novel catalyst, Fe-BTC/humin/Ag, that is able to drive the organic transformation of cinnamaldehyde in a highly selective manner. Moreover, the catalyst exhibited recyclability up to five cycles, which is in contrast to the Fe-BTC/Ag catalyst without the humin-based polymer. It is envisioned that MOF/polymer composites that are able to selectively extract precious metals from liquid waste streams can be used for the future production of sustainable catalysts; this work was aimed at demonstrating a proof of concept in this regard. Moreover, this study brings more understanding of the impact that MOFs can have on polymer functionalities. Understanding the polymer structure and how it can be manipulated will help us realize the high degree of future potential of this distinct class of composite materials.
Collapse
Affiliation(s)
- Vikram V Karve
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Till Schertenleib
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Jordi Espín
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Marta Ximenis Campins
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Claudia E Avalos
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| |
Collapse
|
4
|
Rong S, Chen S, Su P, Tang H, Jia M, Xia Y, Li W. Postsynthetic Modification of Metal-Organic Frameworks by Vapor-Phase Grafting. Inorg Chem 2021; 60:11745-11749. [PMID: 34080431 DOI: 10.1021/acs.inorgchem.1c00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A vapor-phase grafting strategy is developed for the postsynthetic modification of metal-organic frameworks (MOFs). On the basis of the Schotten-Baumann reaction between acyl chloride (-COCl) and amino (-NH2) groups and hydrolysis of -COCl, the carboxylated MOFs could be prepared through simple exposure in vaporized acyl chloride molecules and immersion in water. The modified MOFs have well-maintained crystalline structures and porosities and show substantially improved fluoride removal performance.
Collapse
Affiliation(s)
- Siyi Rong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| | - Shizheng Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| | - Pengcheng Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| | - Huiyu Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| | - Miaomiao Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| | - Yan Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| |
Collapse
|
5
|
Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, Jeong HK. Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and n-Butane/i-Butane Separations. Angew Chem Int Ed Engl 2021; 60:10103-10111. [PMID: 33620755 DOI: 10.1002/anie.202015635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 11/10/2022]
Abstract
We present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches. DLA, as reported here, is a simple one-step synthesis strategy allowing high incorporation of Im linker into the ZIF-8 framework while still retaining its SOD topology. We fabricated mixed-matrix membranes (MMMs) with 6FDA-DAM polymer and Im/ZIF-8 obtained via DLA as a filler. The Im/ZIF-8-containing MMMs showed excellent performance for both propylene/propane and n-butane/i-butane separation, displaying permeability and ideal selectivity well above the polymer upper bound. Moreover, highly detailed molecular simulations shed light to the aperture size and flexibility response of Im/ZIF-8 and its improved diffusivity as compared to ZIF-8.
Collapse
Affiliation(s)
- Febrian Hillman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, USA
| | - Mohamad Rezi Abdul Hamid
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Panagiotis Krokidas
- National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, 15310, Aghia Paraskevi Attikis, Greece
| | - Salvador Moncho
- Science Program, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Edward N Brothers
- Science Program, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, USA.,Department of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, USA
| |
Collapse
|
6
|
Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, Jeong H. Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and n‐Butane/i‐Butane Separations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Febrian Hillman
- Artie McFerrin Department of Chemical Engineering Texas A&M University 3122 TAMU College Station TX 77843-3122 USA
| | - Mohamad Rezi Abdul Hamid
- Department of Chemical and Environmental Engineering Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Panagiotis Krokidas
- National Center for Scientific Research “Demokritos” Institute of Nanoscience and Nanotechnology Molecular Thermodynamics and Modelling of Materials Laboratory 15310 Aghia Paraskevi Attikis Greece
| | - Salvador Moncho
- Science Program Texas A&M University at Qatar P.O. Box 23874, Education City Doha Qatar
| | - Edward N. Brothers
- Science Program Texas A&M University at Qatar P.O. Box 23874, Education City Doha Qatar
| | - Ioannis G. Economou
- Chemical Engineering Program Texas A&M University at Qatar P.O. Box 23874, Education City Doha Qatar
| | - Hae‐Kwon Jeong
- Artie McFerrin Department of Chemical Engineering Texas A&M University 3122 TAMU College Station TX 77843-3122 USA
- Department of Materials Science and Engineering Texas A&M University 3122 TAMU College Station TX 77843-3122 USA
| |
Collapse
|
7
|
Hayashi M, Lee DT, Mello MD, Boscoboinik JA, Tsapatsis M. ZIF‐8 Membrane Permselectivity Modification by Manganese(II) Acetylacetonate Vapor Treatment. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mikio Hayashi
- Department of Chemical and Biomolecular Engineering, & Institute for NanoBioTechnology Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Science & Innovation Center Mitsubishi Chemical Corporation 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi Kanagawa 227-8502 Japan
| | - Dennis T. Lee
- Department of Chemical and Biomolecular Engineering, & Institute for NanoBioTechnology Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Matheus Dorneles Mello
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
- Catalysis Center for Energy Innovation University of Delaware Newark DE 19716 USA
| | - J. Anibal Boscoboinik
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
- Materials Science and Chemical Engineering Department Stony Brook University Stony Brook NY 11790 USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering, & Institute for NanoBioTechnology Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Catalysis Center for Energy Innovation University of Delaware Newark DE 19716 USA
- Applied Physics Laboratory Johns Hopkins University 11100 Johns Hopkins Road Laurel MD 20723 USA
| |
Collapse
|
8
|
Hayashi M, Lee DT, de Mello MD, Boscoboinik JA, Tsapatsis M. ZIF-8 Membrane Permselectivity Modification by Manganese(II) Acetylacetonate Vapor Treatment. Angew Chem Int Ed Engl 2021; 60:9316-9320. [PMID: 33481308 DOI: 10.1002/anie.202100173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/12/2023]
Abstract
Vapor-phase treatment of ZIF-8 membranes with manganese(II) acetylacetonate (Mn(acac)2 ) allows permselectivity tuning. Propylene/propane selectivity increases from 31 to 210 after the Mn(acac)2 treatment at 165 °C for 30 min, while selectivities increase from 14.6 to 242 for H2 /CH4 , from 2.9 to 38 for CO2 /CH4 , from 2.4 to 29 for CO2 /N2 , and from 2.9 to 7.5 for O2 /N2 , after Mn(acac)2 treatment at 175 °C for 30 min. Stable equimolar propylene/propane mixture selectivity of 165 at ambient temperature and 4 bar equimolar feed with a propylene flux of 8.3×10-4 mol m-2 s-1 is established. A control experiment excludes thermal treatment alone causing these changes. XPS analysis reveals the presence of Mn(acac)2 on the outer surface of the vapor-treated ZIF-8 membranes while no other changes are detectable by X-ray diffraction and infrared spectroscopy.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Chemical and Biomolecular Engineering, & Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.,Science & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, 227-8502, Japan
| | - Dennis T Lee
- Department of Chemical and Biomolecular Engineering, & Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Matheus Dorneles de Mello
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.,Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.,Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering, & Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.,Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, 19716, USA.,Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
| |
Collapse
|
9
|
Tu M, Kravchenko DE, Xia B, Rubio-Giménez V, Wauteraerts N, Verbeke R, Vankelecom IFJ, Stassin T, Egger W, Dickmann M, Amenitsch H, Ameloot R. Template-Mediated Control over Polymorphism in the Vapor-Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angew Chem Int Ed Engl 2021; 60:7553-7558. [PMID: 33350565 DOI: 10.1002/anie.202014791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Indexed: 11/07/2022]
Abstract
The landscape of possible polymorphs for some metal-organic frameworks (MOFs) can pose a challenge for controlling the outcome of their syntheses. Demonstrated here is the use of a template to control in the vapor-assisted formation of zeolitic imidazolate framework (ZIF) powders and thin films. Introducing a small amount of either ethanol or dimethylformamide vapor during the reaction between ZnO and 4,5-dichloroimidazole vapor results in the formation of the porous ZIF-71 phase, whereas other conditions lead to the formation of the dense ZIF-72 phase or amorphous materials. Time-resolved in situ small-angle X-ray scattering reveals that the porous phase is metastable and can be transformed into its dense polymorph. This transformation is avoided through the introduction of template vapor. The porosity of the resulting ZIF powders and films was studied by N2 and Kr physisorption, as well as positron annihilation lifetime spectroscopy. The templating principle was demonstrated for other members of the ZIF family as well, including the ZIF-7 series, ZIF-8_Cl, and ZIF-8_Br.
Collapse
Affiliation(s)
- Min Tu
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Dmitry E Kravchenko
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Benzheng Xia
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Nathalie Wauteraerts
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Rhea Verbeke
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ivo F J Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Timothée Stassin
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Werner Egger
- Department Institut für Angewandte Physik und Messtechnik LRT2, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Marcel Dickmann
- Department Institut für Angewandte Physik und Messtechnik LRT2, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.,Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748, Garching, Germany
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
10
|
Tu M, Kravchenko DE, Xia B, Rubio‐Giménez V, Wauteraerts N, Verbeke R, Vankelecom IFJ, Stassin T, Egger W, Dickmann M, Amenitsch H, Ameloot R. Template‐Mediated Control over Polymorphism in the Vapor‐Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Min Tu
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Dmitry E. Kravchenko
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Benzheng Xia
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Víctor Rubio‐Giménez
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Nathalie Wauteraerts
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Rhea Verbeke
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Ivo F. J. Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Timothée Stassin
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Werner Egger
- Department Institut für Angewandte Physik und Messtechnik LRT2 Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg Germany
| | - Marcel Dickmann
- Department Institut für Angewandte Physik und Messtechnik LRT2 Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry Graz University of Technology Stremayrgasse 9/IV 8010 Graz Austria
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|