1
|
Synthesis of Substituted Tropones and Advancement for the Construction of Structurally Significant Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
3
|
Li Z, Zhao F, Ou W, Huang PQ, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021; 60:26604-26609. [PMID: 34596947 DOI: 10.1002/anie.202111029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 12/15/2022]
Abstract
A variety of inert tertiary amides have been successfully transformed into synthetically important chiral propargylamines in high yields with good to excellent enantioselectivities via a relayed sequence of Ir catalyzed partial reduction and Cu/GARPHOS catalyzed asymmetric alkynylation with terminal alkynes. The reaction was readily extended to some drug molecules and the transformations of representative products have been demonstrated, thus attesting the practical utilities and the robust nature of the protocol.
Collapse
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
4
|
Matheau‐Raven D, Dixon DJ. General α-Amino 1,3,4-Oxadiazole Synthesis via Late-Stage Reductive Functionalization of Tertiary Amides and Lactams*. Angew Chem Int Ed Engl 2021; 60:19725-19729. [PMID: 34191400 PMCID: PMC8457168 DOI: 10.1002/anie.202107536] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/25/2023]
Abstract
An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol %) Vaska's complex (IrCl(CO)(PPh3 )2 ) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of α-amino 1,3,4-oxadiazole architectures were accessed from carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. The high chemoselectivity of the catalytic reductive activation step allowed late-stage functionalization of 10 drug molecules, including the synthesis of heterodiazole-fused drug-drug conjugates.
Collapse
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Darren J. Dixon
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| |
Collapse
|
5
|
Matheau‐Raven D, Dixon DJ. General α‐Amino 1,3,4‐Oxadiazole Synthesis via Late‐Stage Reductive Functionalization of Tertiary Amides and Lactams**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
6
|
Bertuzzi G, McLeod D, Mohr LM, Jørgensen KA. Organocatalytic Enantioselective 1,3-Dipolar [6+4] Cycloadditions of Tropone. Chemistry 2020; 26:15491-15496. [PMID: 32677710 DOI: 10.1002/chem.202003329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 01/03/2023]
Abstract
A highly stereoselective 1,3-dipolar [6+4] cycloaddition towards bridged azabicyclo[4.3.1]decane scaffolds has been developed, reacting aldehydes, 2-aminomalonates and tropone under mild conditions in the presence of a chiral phosphoric acid catalyst. The scope is demonstrated for a series of aldehydes and 2-aminomalonates, and the reaction proceeds in high yields, >95:5 d.r. and up to 99 % ee. A series of transformations, as well as a mechanistic proposal, are presented.
Collapse
Affiliation(s)
- Giulio Bertuzzi
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - David McLeod
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Lisa-Marie Mohr
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
7
|
Zhou J, Tan D, Han F. A Divergent Enantioselective Total Synthesis of Post‐Iboga Indole Alkaloids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Zhou
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Remin Street Changchun Jilin 130022 China
- The University of Chinese Academy of Sciences Beijing 100864 China
| | - Dong‐Xing Tan
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Remin Street Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Fu‐She Han
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Remin Street Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
- Key Lab of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
8
|
Zhou J, Tan DX, Han FS. A Divergent Enantioselective Total Synthesis of Post-Iboga Indole Alkaloids. Angew Chem Int Ed Engl 2020; 59:18731-18740. [PMID: 32614122 DOI: 10.1002/anie.202008242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/05/2022]
Abstract
Divergent enantioselective total syntheses of five naturally occurring post-iboga indole alkaloids, dippinine B and C, 10,11-demethoxychippiine, 3-O-methyl-10,11-demethoxychippiine, and 3-hydroxy-3,4-secocoronaridine, as well as the two analogues 11-demethoxydippinine A and D, are presented for the first time. The enantioenriched aza[3.3.1]-bridged cycle, a common core intermediate to the target molecules, was constructed through an asymmetric phase-transfer-catalyzed Michael/aldol cascade reaction. The challenging azepane ring fused around the indole ring and the [3.3.1]-bridged cycle were installed through an intramolecular SN 2'-type reaction. These cyclization strategies enabled rapid construction of the [6.5.6.6.7]-pentacyclic core at an early stage. Highlights of the late-stage synthetic steps include a Pd-catalyzed Stille coupling and a highly stereoselective catalyst-controlled hydrogenation to incorporate the side chain at C20 with both R and S configurations in the natural products.
Collapse
Affiliation(s)
- Jie Zhou
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Remin Street, Changchun, Jilin, 130022, China.,The University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Dong-Xing Tan
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Remin Street, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Remin Street, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|