1
|
Raya-Barón Á, Mazarío J, Mencia G, Fazzini PF, Chaudret B. l-Lysine Stabilized FeNi Nanoparticles for the Catalytic Reduction of Biomass-Derived Substrates in Water Using Magnetic Induction. CHEMSUSCHEM 2023:e202300009. [PMID: 36877569 DOI: 10.1002/cssc.202300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The reduction of biomass-derived compounds gives access to valuable chemicals from renewable sources, circumventing the use of fossil feedstocks. Herein, we describe the use of iron-nickel magnetic nanoparticles for the reduction of biomass model compounds in aqueous media under magnetic induction. Nanoparticles with a hydrophobic ligand (FeNi3 -PA, PA=palmitic acid) have been employed successfully, and their catalytic performance is intended to improve by ligand exchange with lysine (FeNi3 -Lys and FeNi3 @Ni-Lys NPs) to enhance water dispersibility. All three catalysts have been used to hydrogenate 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan with complete selectivity and almost quantitative yields, using 3 bar of H2 and a magnetic field of 65 mT in water. These catalysts have been recycled up to 10 times maintaining high conversions. Under the same conditions, levulinic acid has been hydrogenated to γ-valerolactone, and 4'-hydroxyacetophenone hydrodeoxygenated to 4-ethylphenol, with conversions up to 70 % using FeNi3 -Lys, and selectivities above 85 % in both cases. This promising catalytic system improves biomass reduction sustainability by avoiding noble metals and expensive ligands, increasing energy efficiency via magnetic induction heating, using low H2 pressure, and proving good reusability while working in an aqueous medium.
Collapse
Affiliation(s)
- Álvaro Raya-Barón
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Jaime Mazarío
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Gabriel Mencia
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Pier-Francesco Fazzini
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Bruno Chaudret
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| |
Collapse
|
2
|
Ghosh S, Ourlin T, Fazzini PF, Lacroix LM, Tricard S, Esvan J, Cayez S, Chaudret B. Magnetically Induced CO 2 Methanation In Continuous Flow Over Supported Nickel Catalysts with Improved Energy Efficiency. CHEMSUSCHEM 2023; 16:e202201724. [PMID: 36379873 DOI: 10.1002/cssc.202201724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A new selective and efficient catalytic system for magnetically induced catalytic CO2 methanation was developed, composed of an abundant iron-based heating agent, namely a commercial iron wool, combined with supported Nickel nanoparticles (Ni NPs) as catalysts. The effect of metal oxide support was evaluated by preparing different 10 wt % Ni catalyst (TiO2 , ZrO2 , CeO2 , and CeZrO2 ) via organometallic decomposition route. As-prepared catalysts were thoroughly characterized using powder X-ray diffraction, electron microscopy, elemental analysis, vibrating sample magnetometer, and X-ray photoelectron spectroscopy techniques. High conversion and selectivity toward methane were observed at mid-temperature range, hence improving energy efficiency of the process with respect to the previous results under magnetic heating conditions. To gain further insight into the catalytic system, the effects of the synthesis method and of 0.5 wt % Ru doping were evaluated. Finally, the dynamic nature of magnetically induced heating was demonstrated through fast stop-and-go experiments, proving the suitability of this technology for the storage of intermittent renewable energy through P2G process.
Collapse
Affiliation(s)
- Sourav Ghosh
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Thibault Ourlin
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Pier-Francesco Fazzini
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Lise-Marie Lacroix
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Simon Tricard
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Jerome Esvan
- CIRIMAT-ENSIACET, INP-ENSIACET, 4 allée Emile Monso, BP 44362, 31030, Toulouse cedex 4, France
| | - Simon Cayez
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| | - Bruno Chaudret
- LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), Université de Toulouse, CNRS, INSA, UPS, 31077, Toulouse, France
| |
Collapse
|
3
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202207301. [DOI: 10.1002/anie.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Estrader
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| |
Collapse
|
4
|
Zheng HB, Wang YL, Xie JW, Gao PZ, Li DY, Rebrov EV, Qin H, Liu XP, Xiao HN. Enhanced Alkaline Oxygen Evolution Using Spin Polarization and Magnetic Heating Effects under an AC Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34627-34636. [PMID: 35862430 DOI: 10.1021/acsami.2c05977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Renewable electricity from splitting water to produce hydrogen is a favorable technology to achieve carbon neutrality, but slow anodic oxygen evolution reaction (OER) kinetics limits its large-scale commercialization. Electron spin polarization and increasing the reaction temperature are considered as potential ways to promote alkaline OER. Here, it is reported that in the alkaline OER process under an AC magnetic field, a ferromagnetic ordered electrocatalyst can simultaneously act as a heater and a spin polarizer to achieve significant OER enhancement at a low current density. Moreover, its effect obviously precedes antiferromagnetic, ferrimagnetic, and diamagnetic electrocatalysts. In particular, the noncorrected overpotential of the ferromagnetic electrocatalyst Co at 10 mA cm-2 is reduced by a maximum of 36.6% to 243 mV at 4.320 mT. It is found that the magnetic heating effect is immediate, and more importantly, it is localized and hardly affects the temperature of the entire electrolytic cell. In addition, the spin pinning effect established on the ferromagnetic/paramagnetic interface generated during the reconstruction of the ferromagnetic electrocatalyst expands the ferromagnetic order of the paramagnetic layer. Also, the introduction of an external magnetic field further increases the orderly arrangement of spins, thereby promoting OER. This work provides a reference for the design of high-performance OER electrocatalysts under a magnetic field.
Collapse
Affiliation(s)
- Hang-Bo Zheng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuan-Li Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jia-Wei Xie
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peng-Zhao Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Dong-Yun Li
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310016, China
| | - Evgeny V Rebrov
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Hang Qin
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Pan Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Han-Ning Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Estrader
- CNRS: Centre National de la Recherche Scientifique LPCNO FRANCE
| | | | - Bruno Chaudret
- CNRS: Centre National de la Recherche Scientifique LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) 135 Avenue de Rangueil 31077 Toulouse FRANCE
| |
Collapse
|
6
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu 2 Cr 2 O 5 Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous-Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021; 60:26639-26646. [PMID: 34617376 PMCID: PMC9298693 DOI: 10.1002/anie.202107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Indexed: 11/10/2022]
Abstract
Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.
Collapse
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets.Université de ToulouseINSAUPSLPCNOCNRS-UMR5215135 Avenue de Rangueil31077ToulouseFrance
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
7
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu
2
Cr
2
O
5
Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous‐Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets. Université de Toulouse INSA UPS LPCNO CNRS-UMR5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
8
|
Wang W, Duong-Viet C, Tuci G, Liu Y, Rossin A, Luconi L, Nhut JM, Nguyen-Dinh L, Giambastiani G, Pham-Huu C. Highly Nickel-Loaded γ-Alumina Composites for a Radiofrequency-Heated, Low-Temperature CO 2 Methanation Scheme. CHEMSUSCHEM 2020; 13:5468-5479. [PMID: 32871050 DOI: 10.1002/cssc.202001885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
In this work, we joined highly Ni-loaded γ-Al2 O3 composites, straightforwardly prepared by impregnation methods, with an induction heating setup suited to control, almost in real-time, any temperature swing at the catalyst sites (i. e., "hot spots" ignition) caused by an exothermic reaction at the heart of the power-to-gas (P2G) chain: CO2 methanation. We have shown how the combination of a poor thermal conductor (γ-Al2 O3 ) as support for large and highly interconnected nickel aggregates together with a fast heat control of the temperature at the catalytic bed allow part of the extra-heat generated by the reaction exothermicity to be reused for maintaining the catalyst under virtual isothermal conditions, hence reducing the reactor power supply. Most importantly, a highly efficient methanation scheme for substitute natural gas (SNG) production (X CO 2 up 98 % with >99 % S CH 4 ) under operative temperatures (150-230 °C) much lower than those commonly required with traditional heating setup has been proposed. As far as sustainable and environmental issues are concerned, this approach re-evaluates industrially attractive composites (and their large-scale preparation methods) for application to key processes at the heart of P2G chain while providing robust catalysts for which risks associated to nano-objects leaching phenomena are markedly reduced if not definitively suppressed.
Collapse
Affiliation(s)
- Wei Wang
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Cuong Duong-Viet
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics Chinese Academy of Science, 457 Zhongshan Road, 116023, Dalian, P. R. China
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy
| | - Lapo Luconi
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy
| | - Jean-Mario Nhut
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Lam Nguyen-Dinh
- The University of Da-Nang, University of Science and Technology 54, Nguyen Luong Bang, Da-Nang, Vietnam
| | - Giuliano Giambastiani
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087, Strasbourg Cedex 02, France
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy
- Kazan Federal University, 420008, Kazan, Russian Federation
| | - Cuong Pham-Huu
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
9
|
Rivas-Murias B, Asensio JM, Mille N, Rodríguez-González B, Fazzini PF, Carrey J, Chaudret B, Salgueiriño V. Magnetically Induced CO 2 Methanation Using Exchange-Coupled Spinel Ferrites in Cuboctahedron-Shaped Nanocrystals. Angew Chem Int Ed Engl 2020; 59:15537-15542. [PMID: 32574410 DOI: 10.1002/anie.202004908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/16/2020] [Indexed: 11/08/2022]
Abstract
Magnetically induced catalysis can be promoted taking advantage of optimal heating properties from the magnetic nanoparticles to be employed. However, when unprotected, these heating agents that are usually air-sensitive, get sintered under the harsh catalytic conditions. In this context, we present, to the best of our knowledge, the first example of air-stable magnetic nanoparticles that: 1) show excellent performance as heating agents in the CO2 methanation catalyzed by Ni/SiRAlOx, with CH4 yields above 95 %, and 2) do not sinter under reaction conditions. To attain both characteristics we demonstrate, first the exchange-coupled magnetic approach as an alternative and effective way to tune the magnetic response and heating efficiency, and second, the chemical stability of cuboctahedron-shaped core-shell hard CoFe2 O4 -soft Fe3 O4 nanoparticles.
Collapse
Affiliation(s)
- Beatriz Rivas-Murias
- Departamento de Física Aplicada and CINBIO, Universidade de Vigo, 36310, Vigo, Spain
| | - Juan M Asensio
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Nicolas Mille
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | | | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Verónica Salgueiriño
- Departamento de Física Aplicada and CINBIO, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
10
|
Rivas‐Murias B, Asensio JM, Mille N, Rodríguez‐González B, Fazzini P, Carrey J, Chaudret B, Salgueiriño V. Magnetically Induced CO
2
Methanation Using Exchange‐Coupled Spinel Ferrites in Cuboctahedron‐Shaped Nanocrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Beatriz Rivas‐Murias
- Departamento de Física Aplicada and CINBIO Universidade de Vigo 36310 Vigo Spain
| | - Juan M. Asensio
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Nicolas Mille
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | | | - Pier‐Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Verónica Salgueiriño
- Departamento de Física Aplicada and CINBIO Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|