1
|
Yadav V, Jana A, Acharya S, Malola S, Nagar H, Sharma A, Kini AR, Antharjanam S, Machacek J, Adarsh KNVD, Base T, Häkkinen H, Pradeep T. Site-specific substitution in atomically precise carboranethiol-protected nanoclusters and concomitant changes in electronic properties. Nat Commun 2025; 16:1197. [PMID: 39885129 PMCID: PMC11782596 DOI: 10.1038/s41467-025-56385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
We report the synthesis of [Ag17(o1-CBT)12]3- abbreviated as Ag17, a stable 8e⁻ anionic cluster with a unique Ag@Ag12@Ag4 core-shell structure, where o1-CBT is ortho-carborane-1-thiol. By substituting Ag atoms with Au and/or Cu at specific sites we created isostructural clusters [AuAg16(o1-CBT)12]3- (AuAg16), [Ag13Cu4(o1-CBT)12]3- (Ag13Cu4) and [AuAg12Cu4(o1-CBT)12]3- (AuAg12Cu4). These substitutions make systematic modulation of their structural and electronic properties. We show that Au preferentially occupies the core, while Cu localizes in the tetrahedral shell, influencing stability and structural diversity of the clusters. The band gap expands systematically (2.09 eV for Ag17 to 2.28 eV for AuAg12Cu4), altering optical absorption and emission. Ultrafast optical measurements reveal longer excited-state lifetimes for Cu-containing clusters, highlighting the effect of heteroatom incorporation. These results demonstrate a tunable platform for designing nanoclusters with tailored electronic properties, with implications for optoelectronics and catalysis.
Collapse
Affiliation(s)
- Vivek Yadav
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Arijit Jana
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Sami Malola
- Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014, Jyväskylä, Finland
| | - Harshita Nagar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ankit Sharma
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Sudhadevi Antharjanam
- Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, Rez, 25068, Czech Republic
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, Rez, 25068, Czech Republic.
| | - Hannu Häkkinen
- Department of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI 40014, Jyväskylä, Finland.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai, 600036, India.
| |
Collapse
|
2
|
Alam N, Rahaman T, Das AK, Pal AK, Datta A, Ray SJ, Mondal PK, Polentarutti M, Mandal S. Inflection of Resistive Switching Behavior in Atomically Precise Silver Cluster-Assembled Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409118. [PMID: 39659068 DOI: 10.1002/smll.202409118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 12/12/2024]
Abstract
Bottom-up design of electronic materials based on nanometer-sized building blocks requires precise control over their self-assembly process. Atomically precise metal nanoclusters (NCs) are the well-characterized building blocks for crafting tunable nanomaterials. Here, a solution-processed assembly of a newly synthesized molecular silver nanocluster (0 D Ag12-NC) into a 1D nanocluster chain (1 D Ag12-CAM) is mediated by 4,4'-bipyridine linker Both 0 D Ag12-NC and 1 D Ag12-CAM consist of Ag12 core that adopts the cuboctahedron geometry protected by organic ligands. The resistive switching devices are fabricated in a sandwich-like structure of ITO (Indium tin oxide)/X/Ag (where X is either 0 D Ag12-NC or 1 D Ag12-CAM). The device based on 1 D Ag12-CAM exhibited excellent resistive switching behaviour, enduring up to 1000 cycles and boasting a fivefold higher Ion/Ioff ratio compared to the device based on the molecular 0 D Ag12-NC nanocluster. Furthermore, the device based on 1 D Ag12-CAM demonstrated negative differential resistance (NDR) phenomena, achieving a peak-to-valley ratio of 2.34 with a switching efficiency of 23 Ns. This work highlights the importance of interconnecting molecular nanoclusters into 1D nanocluster chains for fine-tuning resistive memory properties in futuristic electronic appliances.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Towhidur Rahaman
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Associate for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Associate for the Cultivation of Sciences, Kolkata, West Bengal, 700032, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Maurizio Polentarutti
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
3
|
Roy J, Marathe I, Wysocki V, Pradeep T. Observing atomically precise nanocluster aggregates in solution by mass photometry. Chem Commun (Camb) 2024; 60:6655-6658. [PMID: 38856910 DOI: 10.1039/d4cc00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We report the first mass photometric characterization of nanoaggregates of atomically precise nanoclusters (NCs) in solution. The differently-sized nanoaggregates of silver-gold alloy NCs, [Ag11-xAux(DPPB)5Cl5O2]2+ [x = 1-5 and DPPB = 1,4-bis(diphenylphosphino)butane], formed in solution, were examined by mass photometry (MP) with a protein calibration. In addition, we conducted MP studies of varying solvent composition to understand the structural evolution of nanoaggregates. The masses of nanoaggregates were correlated to structures of 15 to 50 nm diameter observed in cryo-electron microscopy.
Collapse
Affiliation(s)
- Jayoti Roy
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Ila Marathe
- Department of Chemistry and Biochemistry and Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vicki Wysocki
- Department of Chemistry and Biochemistry and Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
- International Centre for Clean Water, 2nd Floor, B-Block, IIT Madras Research Park, Kanagam Road, Taramani, Chennai 600113, India
| |
Collapse
|
4
|
Sakai J, Biswas S, Irie T, Mabuchi H, Sekine T, Niihori Y, Das S, Negishi Y. Synthesis and luminescence properties of two silver cluster-assembled materials for selective Fe 3+ sensing. NANOSCALE 2023. [PMID: 37378425 DOI: 10.1039/d3nr01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Silver cluster-assembled materials (SCAMs) are emerging light-emitting materials with molecular-level structural designability and unique photophysical properties. Nevertheless, the widespread application scope of these materials is severely curtailed by their dissimilar structural architecture upon immersing in different solvent media. In this work, we report the designed synthesis of two unprecedented (4.6)-connected three-dimensional (3D) luminescent SCAMs, [Ag12(StBu)6(CF3COO)6(TPEPE)6]n (denoted as TUS 1), TPEPE = 1,1,2,2-tetrakis(4-(pyridin-4-ylethynyl)phenyl)ethene and [Ag12(StBu)6(CF3COO)6(TPVPE)6]n (denoted as TUS 2), TPVPE = 1,1,2,2-tetrakis(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)ethene, composed of an Ag12 cluster core connected by quadridentate pyridine linkers. Attributed to their exceptional fluorescence properties with absolute quantum yield (QY) up to 9.7% and excellent chemical stability in a wide range of solvent polarity, a highly sensitive assay for detecting Fe3+ in aqueous medium is developed with promising detection limits of 0.05 and 0.86 nM L-1 for TUS 1 and TUS 2 respectively, comparable to the standard. Furthermore, the competency of these materials to detect Fe3+ in real water samples reveals their potential application in environmental monitoring and assessment.
Collapse
Affiliation(s)
- Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiki Niihori
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Saikat Das
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Nakashima T, Tanibe R, Yoshida H, Ehara M, Kuzuhara M, Kawai T. Self‐Regulated Pathway‐Dependent Chirality Control of Silver Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202208273. [DOI: 10.1002/anie.202208273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Nakashima
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
- Department of Chemistry Graduate School of Science Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Riku Tanibe
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Hiroto Yoshida
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Masahiro Ehara
- Research Center for Computational Science Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
| | - Miwa Kuzuhara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| |
Collapse
|
6
|
Nakashima T, Tanibe R, Yoshida H, Ehara M, Kuzuhara M, Kawai T. Self‐regulated Pathway‐dependent Chirality Control of Silver Nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Nakashima
- Osaka Metropolitan University: Osaka Koritsu Daigaku Department of Chemistry, Graduate School of Science 3-3-138 SugimotoSumiyoshi-ku 558-8585 Osaka JAPAN
| | - Riku Tanibe
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Hiroto Yoshida
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Masahiro Ehara
- Bunshi Kagaku Kenkyujo Research Center for Computational Science JAPAN
| | - Miwa Kuzuhara
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Tsuyoshi Kawai
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| |
Collapse
|
7
|
Shen H, Xu Z, Wang L, Han Y, Liu X, Malola S, Teo BK, Häkkinen H, Zheng N. Tertiary Chiral Nanostructures from C−H⋅⋅⋅F Directed Assembly of Chiroptical Superatoms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lingzheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ying‐Zi Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
8
|
Shen H, Xu Z, Wang L, Han YZ, Liu X, Malola S, Teo BK, Häkkinen H, Zheng N. Tertiary Chiral Nanostructures from C-H⋅⋅⋅F Directed Assembly of Chiroptical Superatoms. Angew Chem Int Ed Engl 2021; 60:22411-22416. [PMID: 34347339 DOI: 10.1002/anie.202108141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
We report the synthesis and structure of tertiary chiral nanostructures with 100 % optical purity. A novel synthetic strategy, using chiral reducing agent, R and S-BINAPCuBH4 (BINAP is 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl), is developed to access to atomically precise, intrinsically chiral [Au7 Ag6 Cu2 (R- or S-BINAP)3 (SCH2 Ph)6 ]SbF6 nanoclusters in one-pot synthesis. The clusters represent the first tri-metallic superatoms with inherent chirality and fair stability. Both metal distribution (primary) and ligand arrangement (secondary) of the enantiomers exhibited perfect mirror images, and unprecedentedly, the self-assembly driven by the C-H⋅⋅⋅F interaction between the phenyl groups of the superatom moieties and SbF6 - anions induced the formation of bio-mimic left- and right-handed helices, achieving the tertiary chiral nanostructures. DFT calculations revealed the connections between the molecular details and chiral optical activity.
Collapse
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingzheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ying-Zi Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Boon K Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Wu H, He X, Yang B, Li CC, Zhao L. Assembly-Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters. Angew Chem Int Ed Engl 2021; 60:1535-1539. [PMID: 32959488 DOI: 10.1002/anie.202008765] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/19/2020] [Indexed: 12/15/2022]
Abstract
Spirocyclic Ag9 clusters, as a new form of intrinsically chiral metal clusters, were constructed through vertex-sharing of two in-situ-generated heteroaryl diide-centered metal rings. Such core-peripheral type clusters exhibit versatile photoluminescent and chiroptical behavior under different aggregation conditions. In contrast to a ligand-based fluorescence emission in a diluted solution of the clusters, a solvent polarity-caused assembly gives rise to new cluster-based phosphorous luminescence owing to radiative mode switching and aggregation-induced emission. Assembly of cluster enantiomers leads to micrometer-long helical nanofibers, whose handedness is determined by absolute configuration of individual spirocyclic clusters. Benefiting from exciton couplings of helical arrangements of chelating ligands at molecular and microscopic levels, the assembled film of cluster enantiomers exhibits circularly polarized luminescence with a high anisotropy factor (0.16).
Collapse
Affiliation(s)
- Han Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin He
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Biao Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Cui-Cui Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Wu H, He X, Yang B, Li C, Zhao L. Assembly‐Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Han Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xin He
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Biao Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Cui‐Cui Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
11
|
Yang J, Han Z, Dong X, Luo P, Mo H, Zang S. Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew Chem Int Ed Engl 2020; 59:11898-11902. [DOI: 10.1002/anie.202004268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Jin‐Sen Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
| | - Peng Luo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hui‐Lin Mo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
12
|
Yang J, Han Z, Dong X, Luo P, Mo H, Zang S. Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jin‐Sen Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
| | - Peng Luo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hui‐Lin Mo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|