1
|
Eder S, Ding B, Thornton DB, Sammut D, White AJP, Plasser F, Stephens IEL, Heeney M, Mezzavilla S, Glöcklhofer F. Squarephaneic Tetraanhydride: A Conjugated Square-Shaped Cyclophane for the Synthesis of Porous Organic Materials. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212623. [PMID: 38504923 PMCID: PMC10947162 DOI: 10.1002/ange.202212623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/10/2022]
Abstract
Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.
Collapse
Affiliation(s)
- Simon Eder
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Bowen Ding
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Daisy B. Thornton
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Darlene Sammut
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Martin Heeney
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Stefano Mezzavilla
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
| | - Florian Glöcklhofer
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| |
Collapse
|
2
|
Eder S, Ding B, Thornton DB, Sammut D, White AJP, Plasser F, Stephens IEL, Heeney M, Mezzavilla S, Glöcklhofer F. Squarephaneic Tetraanhydride: A Conjugated Square-Shaped Cyclophane for the Synthesis of Porous Organic Materials. Angew Chem Int Ed Engl 2022; 61:e202212623. [PMID: 36178733 PMCID: PMC9827958 DOI: 10.1002/anie.202212623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.
Collapse
Affiliation(s)
- Simon Eder
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Bowen Ding
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Daisy B. Thornton
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Darlene Sammut
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Martin Heeney
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Stefano Mezzavilla
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
| | - Florian Glöcklhofer
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| |
Collapse
|
3
|
Kim T, Joo SH, Gong J, Choi S, Min JH, Kim Y, Lee G, Lee E, Park S, Kwak SK, Lee H, Kim B. Geomimetic Hydrothermal Synthesis of Polyimide‐Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taehyung Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungho Choi
- Division of Advanced Material Science Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Ju Hong Min
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Yongchul Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Geunsik Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Soojin Park
- Division of Advanced Material Science Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hee‐Seung Lee
- Center for Multiscale Chiral Architectures and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeong‐Su Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
4
|
Kim T, Joo SH, Gong J, Choi S, Min JH, Kim Y, Lee G, Lee E, Park S, Kwak SK, Lee HS, Kim BS. Geomimetic Hydrothermal Synthesis of Polyimide-Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113780. [PMID: 34708501 DOI: 10.1002/anie.202113780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Despite its abundance, water is not widely used as a medium for organic reactions. However, under geothermal conditions, water exhibits unique physicochemical properties, such as viscosity and a dielectric constant, and the ionic product become similar to those of common organic solvents. We have synthesized highly crystalline polyimide-based covalent organic frameworks (PICs) under geomimetic hydrothermal conditions. By exploiting triphenylene-2,3,6,7,10,11-hexacarboxylic acid in combination with various aromatic diamines, PICs with various pore dimensions and crystallinities were synthesized. XRD, FT-IR, and DFT calculations revealed that the solubility of the oligomeric intermediates under hydrothermal conditions affected the stacking structures of the crystalline PICs. Furthermore, the synthesized PICs demonstrate promising potential as an anode material in lithium-ion batteries owing to its unique redox-active properties and high surface area.
Collapse
Affiliation(s)
- Taehyung Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.,School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungho Choi
- Division of Advanced Material Science, Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ju Hong Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Soojin Park
- Division of Advanced Material Science, Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|