1
|
Wu X, Wang S, Guo Y, Song S, Zeng S. KAT8 functions in redox homeostasis and mitochondrial dynamics during mouse oocyte meiosis progression. FASEB J 2024; 38:e23435. [PMID: 38243686 DOI: 10.1096/fj.202301946r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
As a histone acetyltransferase, lysine acetyltransferase 8 (KAT8) participates in diverse biological processes. However, the effect of KAT8 on oocyte maturation in mice remains unclear. In this study, we found that mouse oocytes overexpressing Kat8-OE induced maturation failure manifested reduced rates of GVBD and first polar body emission. In addition, immunostaining results revealed that Kat8 overexpressing oocytes showed inappropriate mitochondrial distribution patterns, overproduction of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX, hyperacetylation of α-tubulin, and severely disrupted spindle/chromosome organization. Moreover, we revealed that Kat8 overexpression induced a decline in SOD1 proteins and KAT8's interaction with SOD1 in mouse ovaries via immunoprecipitation. Western blotting data confirmed that Kat8-OE induced downregulation of SOD1 expression, which is a key factor for the decline of oocyte quality in advanced maternal age. Also, the injection of Myc-Sod1 cRNA could partially rescue maternal age-induced meiotic defects in oocytes. In conclusion, our data demonstrated that high level of KAT8 inhibited SOD1 activity, which in turn induced defects of mitochondrial dynamics, imbalance of redox homeostasis, and spindle/chromosome disorganization during mouse oocyte maturation.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Baumer KM, Cook CD, Zahler CT, Beard AA, Chen Z, Koone JC, Dashnaw CM, Villacob RA, Solouki T, Wood JL, Borchelt DR, Shaw BF. Supercharging Prions via Amyloid‐Selective Lysine Acetylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katelyn M. Baumer
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Collin T. Zahler
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Zhijuan Chen
- Department of Neuroscience University of Florida Gainesville FL USA
| | - Jordan C. Koone
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Raul A. Villacob
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - John L. Wood
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Bryan F. Shaw
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| |
Collapse
|
3
|
Baumer KM, Cook CD, Zahler CT, Beard AA, Chen Z, Koone JC, Dashnaw CM, Villacob RA, Solouki T, Wood JL, Borchelt DR, Shaw BF. Supercharging Prions via Amyloid-Selective Lysine Acetylation. Angew Chem Int Ed Engl 2021; 60:15069-15079. [PMID: 33876528 DOI: 10.1002/anie.202103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/10/2022]
Abstract
Repulsive electrostatic forces between prion-like proteins are a barrier against aggregation. In neuropharmacology, however, a prion's net charge (Z) is not a targeted parameter. Compounds that selectively boost prion Z remain unreported. Here, we synthesized compounds that amplified the negative charge of misfolded superoxide dismutase-1 (SOD1) by acetylating lysine-NH3 + in amyloid-SOD1, without acetylating native-SOD1. Compounds resembled a "ball and chain" mace: a rigid amyloid-binding "handle" (benzothiazole, stilbene, or styrylpyridine); an aryl ester "ball"; and a triethylene glycol chain connecting ball to handle. At stoichiometric excess, compounds acetylated up to 9 of 11 lysine per misfolded subunit (ΔZfibril =-8100 per 103 subunits). Acetylated amyloid-SOD1 seeded aggregation more slowly than unacetylated amyloid-SOD1 in vitro and organotypic spinal cord (these effects were partially due to compound binding). Compounds exhibited reactivity with other amyloid and non-amyloid proteins (e.g., fibrillar α-synuclein was peracetylated; serum albumin was partially acetylated; carbonic anhydrase was largely unacetylated).
Collapse
Affiliation(s)
- Katelyn M Baumer
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Christopher D Cook
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Collin T Zahler
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Alexandra A Beard
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Zhijuan Chen
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jordan C Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Chad M Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - David R Borchelt
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Herman S, Lipiński P, Ogórek M, Starzyński R, Grzmil P, Bednarz A, Lenartowicz M. Molecular Regulation of Copper Homeostasis in the Male Gonad during the Process of Spermatogenesis. Int J Mol Sci 2020; 21:ijms21239053. [PMID: 33260507 PMCID: PMC7730223 DOI: 10.3390/ijms21239053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.
Collapse
Affiliation(s)
- Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
- Correspondence:
| |
Collapse
|