1
|
Ashie MD, Kumar D, Bastakoti BP. An Emerging Trend in the Synthesis of Iron Titanate Photocatalyst Toward Water Splitting. CHEM REC 2024; 24:e202400016. [PMID: 38775239 DOI: 10.1002/tcr.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Indexed: 05/29/2024]
Abstract
Hydrogen gas is a prominent focus in pursuing renewable and clean alternative energy sources. The quest for maximizing hydrogen production yield involves the exploration of an ideal photocatalyst and the development of a simple, cost-effective technique for its generation. Iron titanate has garnered attention in this context due to its photocatalytic properties, affordability, and non-toxic nature. Over the years, different synthesis routes, different morphologies, and some modifications of iron titanate have been carried out to improve its photocatalytic performance by enhancing light absorption in the visible region, boosting charge carrier transfer, and decreasing recombination of electrons and holes. The use of iron titanate photocatalyst for hydrogen evolution reaction has seen an upward trend in recent times, and based on available findings, more can be done to improve the performance. This review paper provides a comprehensive overview of the fundamental principles of photocatalysis for hydrogen generation, encompassing the synthesis, morphology, and application of iron titanate-based photocatalysts. The discussion delves into the limitations of current methodologies and present and future perspectives for advancing iron titanate photocatalysts. By addressing these limitations and contemplating future directions, the aim is to enhance the properties of materials fabricated for photocatalytic water splitting.
Collapse
Affiliation(s)
- Moses D Ashie
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC-27411, USA
| | - Dhananjay Kumar
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC-27411, USA
| | - Bishnu Prasad Bastakoti
- Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC-27411, USA
| |
Collapse
|
2
|
Javed M, Khan MU, Hussain R, Ahmed S, Ahamad T. Deciphering the electrochemical sensing capability of novel Ga 12As 12 nanocluster towards chemical warfare phosgene gas: insights from DFT. RSC Adv 2023; 13:28885-28903. [PMID: 37790104 PMCID: PMC10543987 DOI: 10.1039/d3ra05086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The applications of 3D inorganic nanomaterials in environmental and agriculture monitoring have been exploited continuously; however, the utilization of semiconductor nanoclusters, especially for detecting warfare agents, has not been fully investigated yet. To fill this gap, the molecular modelling of novel inorganic semiconductor nanocluster Ga12As12 as a sensor for phosgene gas (highly toxic for living things and the environment) is accomplished employing benchmark DFT and TD-DFT investigations. Computational tools have been applied to explore different adsorption sites and the potential sensing capability of the Ga12As12 nanoclusters. The calculated adsorption energy (-21.34 ± 2.7 kcal mol-1) for ten selected complexes, namely, Pgn-Cl@4m-ring (MS1), Pgn-Cl@6m-ring (MS2), Pgn-Cl@XY66 (MS3), Pgn-O@4m-ring (MS4), Pgn-O@XY66 (MS5), Pgn-O@XY64 (MS6), Pgn-O@Y (MS7), Pgn-planar@Y (MS8), Pgn-planar@X (MS9), and Pgn-planar@4m-ring (MS10), manifest the remarkable and excessive adsorption response of the studied nanoclusters. The explored molecular electronic properties, such as interaction distance (3.05 ± 0.5 Å), energy gap (∼2.17 eV), softness (∼0.46 eV), hardness (1.10 ± 0.01 eV), electrophilicity index (10.27 ± 0.45 eV), electrical conductivity (∼1.98 × 109), and recovery time (∼3 × 10-12 s-1) values, ascertain the elevated reactivity and an imperishable sensitivity of the Ga12As12 nanocluster, particularly for its complex MS8. QTAIM analysis exhibits the presence of a strong electrostatic bond (positive ∇2ρ(r) values), electron delocalization (ELF < 0.5), and a strong chemical bond (because of high all-electron density values). In addition, NBO analysis explores the lone pair electron delocalization of phosgene to the nanocluster stabilized by intermolecular charge transfer (ICT) and different kinds of non-covalent interactions. Also, the green region existence expressed by NCI analysis (between the nanocluster and adsorbate) stipulate the energetic and dominant interactions. Furthermore, the UV-Vis, thermodynamic analysis, and density of state (DOS) demonstrate the maximum absorbance (562.11 nm) and least excitation energy (2.21 eV) by the complex MS8, the spontaneity of the interaction process, and the significant changes in HOMO and LUMO energies, respectively. Thus, the Ga12As12 nanocluster has proven to be a promising influential sensing material to monitor phosgene gas in the real world, and this study will emphasize the informative knowledge for experimental researchers to use Ga12As12 as a sensor for the warfare agent (phosgene).
Collapse
Affiliation(s)
- Muhammad Javed
- Department of Chemistry, University of Okara Okara-56300 Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Okara Okara-56300 Pakistan
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital Boston MA 02114 USA
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University Saudi Arabia
| |
Collapse
|
3
|
Shi L, Benetti D, Wei Q, Rosei F. MOF-Derived In 2 O 3 /CuO p-n Heterojunction Photoanode Incorporating Graphene Nanoribbons for Solar Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300606. [PMID: 37035987 DOI: 10.1002/smll.202300606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Solar-driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H2 ) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p-n heterojunctions based on composite metal oxides. Herein, a MOF-on-MOF (metal-organic framework) template is employed as the precursor to synthesize In2 O3 /CuO p-n heterojunction composite. After incorporation of small amounts of graphene nanoribbons (GNRs), the optimized PEC devices exhibited a maximum current density of 1.51 mA cm-2 (at 1.6 V vs RHE) under one sun illumination (AM 1.5G, 100 mW cm-2 ), which is approximately four times higher than that of the reference device based on only In2 O3 photoanodes. The improvement in the performance of these hybrid anodes is attributed to the presence of a p-n heterojunction that enhances the separation efficiency of photogenerated electron-hole pairs and suppresses charge recombination, as well as the presence of GNRs that can increase the conductivity by offering better path for electron transport, thus reducing the charge transfer resistance. The proposed MOF-derived In2 O3 /CuO p-n heterojunction composite is used to demonstrate a high-performance PEC device for hydrogen generation.
Collapse
Affiliation(s)
- Li Shi
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3×1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Daniele Benetti
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3×1P7, Canada
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3×1P7, Canada
| |
Collapse
|
4
|
Park J, Yoon KY, Kwak MJ, Kang J, Kim S, Chaule S, Ha SJ, Jang JH. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH) x Co-Catalyzed Hematite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9341-9349. [PMID: 36749965 DOI: 10.1021/acsami.2c20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of oxygen evolution co-catalysts (OECs) with hematite photoanodes has received much attention because of the potential to reduce surface charge recombination. However, the low surface charge transfer and bulk charge separation rate of hematite are not improved by decorating with OECs, and the intrinsic drawbacks of hematite still limit efficient photoelectrochemical (PEC) water splitting. Here, we successfully overcame the sluggish oxygen evolution reaction performance of hematite for water splitting by inserting zero-dimensional (0D) nanofragmented MXene (NFMX) as a hole transport material between the hematite and the OEC. The 0D NFMX was fabricated from two-dimensional (2D) MXene sheets and deposited onto the surface of a three-dimensional (3D) hematite photoanode via a centrifuge-assisted method without altering the inherent performance of the 2D MXene sheets. Among many OECs, NiFe(OH)x was selected as the OEC to improve hematite PEC performance in our system because of its efficient charge transport behavior and high stability. Because of the great synergy between NFMX and NiFe(OH)x, NiFe(OH)x/NFMX/Fe2O3 achieved a maximum photocurrent density of 3.09 mA cm-2 at 1.23 VRHE, which is 2.78-fold higher than that of α-Fe2O3 (1.11 mA cm-2). Furthermore, the poor stability of MXene in an aqueous solution for water splitting was resolved by uniformly coating it with NiFe(OH)x, after which it showed outstanding stability for 60 h at 1.23 VRHE. This study demonstrates the successful use of NFMX as a hole transport material combined with an OEC for highly efficient water splitting.
Collapse
Affiliation(s)
- Juhyung Park
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Ki-Yong Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Myung-Jun Kwak
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Jihun Kang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Suhee Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Sourav Chaule
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Seong-Ji Ha
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Usgodaarachchi L, Jayanetti M, Thambiliyagodage C, Liyanaarachchi H, Vigneswaran S. Fabrication of r-GO/GO/α-Fe 2O 3/Fe 2TiO 5 Nanocomposite Using Natural Ilmenite and Graphite for Efficient Photocatalysis in Visible Light. MATERIALS (BASEL, SWITZERLAND) 2022; 16:139. [PMID: 36614479 PMCID: PMC9821193 DOI: 10.3390/ma16010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Hematite (α-Fe2O3) and pseudobrookite (Fe2TiO5) suffer from poor charge transport and a high recombination effect under visible light irradiation. This study investigates the design and production of a 2D graphene-like r-GO/GO coupled α-Fe2O3/Fe2TiO5 heterojunction composite with better charge separation. It uses a simple sonochemical and hydrothermal approach followed by L-ascorbic acid chemical reduction pathway. The advantageous band offset of the α-Fe2O3/Fe2TiO5 (TF) nanocomposite between α-Fe2O3 and Fe2TiO5 forms a Type-II heterojunction at the Fe2O3/Fe2TiO5 interface, which efficiently promotes electron-hole separation. Importantly, very corrosive acid leachate resulting from the hydrochloric acid leaching of ilmenite sand, was successfully exploited to fabricate α-Fe2O3/Fe2TiO5 heterojunction. In this paper, a straightforward synthesis strategy was employed to create 2D graphene-like reduced graphene oxide (r-GO) from Ceylon graphite. The two-step process comprises oxidation of graphite to graphene oxide (GO) using the improved Hummer's method, followed by controlled reduction of GO to r-GO using L-ascorbic acid. Before the reduction of GO to the r-GO, the surface of TF heterojunction was coupled with GO and was allowed for the controlled L-ascorbic acid reduction to yield r-GO/GO/α-Fe2O3/Fe2TiO5 nanocomposite. Under visible light illumination, the photocatalytic performance of the 30% GO/TF loaded composite material greatly improved (1240 Wcm-2). Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) examined the morphological characteristics of fabricated composites. X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), X-ray fluorescence (XRF), and diffuse reflectance spectroscopy (DRS) served to analyze the structural features of the produced composites.
Collapse
Affiliation(s)
- Leshan Usgodaarachchi
- Department of Materials Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
6
|
Bao T, Zou Y, Zhang C, Yu C, Liu C. Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202209433. [DOI: 10.1002/anie.202209433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
7
|
Bao T, Zou Y, Zhang C, Yu C, Liu C. Morphological Anisotropy in Metal‐Organic Framework Micro‐/Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Bao
- East China Normal University School of Chemistry and Molecular Engineering No.500, Dongchuan Road Shanghai CHINA
| | - Yingying Zou
- East China Normal University School of Chemistry and Molecular Engineering No.500, Dongchuan Road Shanghai CHINA
| | - Chaoqi Zhang
- East China Normal University School of Chemistry and Molecular Engineering No.500, Dongchuan Road Shanghai CHINA
| | - Chengzhong Yu
- University of Queensland - Saint Lucia Campus: The University of Queensland Australian Institute for Bioengineering and Nanotechnology AUSTRALIA
| | - Chao Liu
- East China Normal University School of Chemistry and Molecular Engineering No.500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
8
|
Shi L, Benetti D, Li F, Wei Q, Rosei F. Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201815. [PMID: 35521950 DOI: 10.1002/smll.202201815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.
Collapse
Affiliation(s)
- Li Shi
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Daniele Benetti
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| | - Faying Li
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| |
Collapse
|
9
|
Mohadesi M, Gouran A, Seifi K. Removal of ibuprofen from synthetic wastewater using photocatalytic method in the presence of FeO photocatalyst supported on modified Iranian clinoptilolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34338-34348. [PMID: 35038093 DOI: 10.1007/s11356-021-18153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the removal of an organic drug called ibuprofen from the wastewater containing this drug. Iron oxide supported on modified Iranian clinoptilolite was used as the photocatalyst in the presence of the light of a solar lamp. XRD, SEM, EDAX, and FT-IR analyses were performed to detect the prepared photocatalyst. The results of photocatalytic identification analyses proved the suitable loading of iron oxide supported on modified Iranian clinoptilolite. This study investigated the effect of initial concentration of ibuprofen (5-25 mg/L), photocatalyst concentration (100-300 mg/L), and process time (10-240 min) on the removal from ibuprofen from wastewater containing this drug. The experiments were performed in a setup in the presence of a solar lamp with a flux of 300 W/m2. The results indicated that with the initial ibuprofen concentration of 25 mg/L, photocatalyst concentration of 300 mg/L, and time of 210 min, the highest percentage of ibuprofen removal and ibuprofen adsorbed on the catalyst were 99.80% and 83.17 mg/g, respectively. Kinetic modeling was then performed using the Langmuir-Hinshelwood model, and a quasi-first-order kinetic model showed a good agreement with the results obtained. Finally, the recovery of the photocatalyst was investigated, and the results showed that under optimal conditions about 91% of ibuprofen was removed after five re-uses of the photocatalyst.
Collapse
Affiliation(s)
- Majid Mohadesi
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, Iran.
| | - Ashkan Gouran
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, Iran
| | - Kiarash Seifi
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, Iran
| |
Collapse
|
10
|
Wang Z, Zhu H, Tu W, Zhu X, Yao Y, Zhou Y, Zou Z. Host/Guest Nanostructured Photoanodes Integrated with Targeted Enhancement Strategies for Photoelectrochemical Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103744. [PMID: 34738739 PMCID: PMC8805576 DOI: 10.1002/advs.202103744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Photoelectrochemical (PEC) hydrogen production from water splitting is a green technology that can solve the environmental and energy problems through converting solar energy into renewable hydrogen fuel. The construction of host/guest architecture in semiconductor photoanodes has proven to be an effective strategy to improve solar-to-fuel conversion efficiency dramatically. In host/guest photoanodes, the absorber layer is deposited onto a high-surface-area electron collector, resulting in a significant enhancements in light-harvesting as well as charge collection and separation efficiency. The present review aims to summarize and highlight recent state-of-the-art progresses in the architecture designing of host/guest photoanodes with integrated enhancement strategies, including i) light trapping effect; ii) optimization of conductive host scaffolds; iii) hierarchical structure engineering. The challenges and prospects for the future development of host/guest nanostructured photoanodes are also presented.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Heng Zhu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| | - Wenguang Tu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| | - Xi Zhu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| | - Yingfang Yao
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| | - Yong Zhou
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- Jiangsu Key Laboratory for Nano TechnologyNational Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresSchool of PhysicsNanjing UniversityNanjingJiangsu210093P. R. China
| | - Zhigang Zou
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
- Jiangsu Key Laboratory for Nano TechnologyNational Laboratory of Solid State MicrostructuresCollaborative Innovation Center of Advanced MicrostructuresSchool of PhysicsNanjing UniversityNanjingJiangsu210093P. R. China
| |
Collapse
|
11
|
Guo R, Bao Y, Kang Q, Liu C, Zhang W, Zhu Q. Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Kim JH, Choi IY, Kim JH, Kim J, Kim YK, Kim JK, Lee JS. ZnFe 2 O 4 Dendrite/SnO 2 Helix 3D Hetero-Structure Photoanodes for Enhanced Photoelectrochemical Water Splitting: Triple Functions of SnO 2 Nanohelix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103861. [PMID: 34553492 DOI: 10.1002/smll.202103861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
An array of SnO2 nanohelix structures is employed to fabricate a SnO2 helix@ZnFe2 O4 dendrite core-shell 3D heterostructure photoanode for photoelectrochemical (PEC) water splitting. The SnO2 helix provides triple critical functions to enhance the PEC performance of the photoanode. First, it scatters the incident light to achieve a higher light harvesting efficiency. Second, it provides a facile electron pathway as an electron transfer layer (ETL) while blocking hole transport to mitigate charge recombination in the bulk of ZnFe2 O4 . Finally, it becomes a template for the formation of ZnFe2 O4 dendrite nanostructure shell. The ZnFe2 O4 dendrite/SnO2 helix photoanode exhibits a remarkable increase in incident photon-to-electron conversion efficiency compared to unmodified ZnFe2 O4 with no ETL and modified one with "flat" SnO2 ETL. The surface of the ZnFe2 O4 /SnO2 helix photoanode is further modified with TiO2 passivation layer and NiFeOx oxygen evolution co-catalyst to achieve one of the best PEC performances among reported ZnFe2 O4 -based photoanodes.
Collapse
Affiliation(s)
- Jeong Hun Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, South Korea
| | - Il Yong Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Jin Hyun Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, South Korea
| | - Jaerim Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Young Kyeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, South Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, South Korea
| |
Collapse
|
13
|
Vasiljević ZŽ, Dojčinović MP, Vujančević JD, Spreitzer M, Kovač J, Bartolić D, Marković S, Janković-Čaštvan I, Tadić NB, Nikolić MV. Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe 2TiO 5 nanofibers. RSC Adv 2021; 11:32358-32368. [PMID: 35495544 PMCID: PMC9042236 DOI: 10.1039/d1ra05748k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Nanostructured Fe2TiO5 (pseudobrookite), a mixed metal oxide material holds significant promise for utilization in energy and environmental applications. However, its full application is still hindered due to the difficulty to synthesize monophasic Fe2TiO5 with high crystallinity and a large specific surface area. Herein, Fe2TiO5 nanofibers were synthesized via a versatile and low-cost electrospinning method, followed by a calcination process at different temperatures. We found a significant effect of the calcination process and its duration on the crystalline phase in the form of either pseudobrookite or pseudobrookite–hematite–rutile and the morphology of calcined nanofibers. The crystallite size increased whereas the specific surface area decreased with an increase in calcination temperature. At higher temperatures, the growth of Fe2TiO5 nanoparticles and simultaneous coalescence of small particles was noted. The highest specific surface area was obtained for the sample calcined at 500 °C for 6 h (SBET = 64.4 m2 g−1). This work opens new opportunities in the synthesis of Fe2TiO5 nanostructures using the electrospinning method and a subsequent optimized calcination process for energy-related applications. Nanostructured Fe2TiO5 (pseudobrookite), a mixed metal oxide material holds significant promise for utilization in energy and environmental applications.![]()
Collapse
Affiliation(s)
| | | | - Jelena D Vujančević
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts Serbia
| | | | | | - Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade Serbia
| | - Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts Serbia
| | | | | | | |
Collapse
|
14
|
Waqas M. Fe 2TiO 5/Fe 2O 3 (Shell/Shell) and (Shell/Core) Heterostructured for Efficient Oxygen Evolution. Inorg Chem 2021; 60:13461-13470. [PMID: 34424675 DOI: 10.1021/acs.inorgchem.1c01789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A delicate synthesis strategy of Fe2TiO5/Fe2O3 (shell/shell (s/s)) and (shell/core (s/c)) heterostructures was proposed to realize efficient photocatalytic water oxidation. The hierarchical structure increases the light absorption depth of material, the strongly coupled components promoted the separation of photoinduced excitons, and the high surface area with adequate porosity allowed the diffusion of electrolyte to adsorb at rich active sites. Furthermore, Fe2TiO5/Fe2O3 (s/s) was coated by graphitic carbon nitride (g-CN) subunits and exhibited good photocatalytic water reduction, resulting from the contact interface accelerating the effective separation of electrons and holes.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, Xueyuan Road No. 1066, Nanshan, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
15
|
Guo H, Li W, Chen K, Yue M, Huang Y, Liu Y, Shao H, Chen C, Wang C, Wang Y. Strategic Structure Tuning of Yolk-Shell Microcages for Efficient Nitrogen Fixation. CHEMSUSCHEM 2021; 14:2521-2528. [PMID: 33830646 DOI: 10.1002/cssc.202100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Indexed: 06/12/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (ENRR) under ambient conditions is considered as a promising process to produce ammonia. Towards highly efficient catalysts, here an optimized one-step pyrolysis strategy was tailored to design yolk-shell microcages (YS Co@C/BLCNTs), consisting of Co nanocrystals encapsulated in N-doped carbon framework and bridged by bamboo-like carbon nanotubes (BLCNTs). The cavity created between yolk and shell not only served as a "micro-bag" to store the reactant N2 and enhance its dissolution, but also induced a "cage effect" to confine the diffusion of reaction intermediate, hence making the reaction proceed in the direction of producing NH3 . This catalyst displayed excellent catalytic activities for ENRR: a high NH3 yield of 12.87 μg mgcat -1 h-1 at a high faradaic efficiency of 20.7 % at -0.45 V (vs. reversible hydrogen electrode, RHE). After 5 cycles of consecutive ENRR process, the NH3 yield rate was 11.29 μg mgcat -1 h-1 , indicating the excellent electrocatalytic stability. These results provide a structural engineering for ENRR catalyst with doped N, cooperating with non-precious metal to activate the inert triple bond of N2 and achieve NH3 fixation.
Collapse
Affiliation(s)
- Huinan Guo
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiqin Li
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Chen
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mengyuan Yue
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yike Huang
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yafei Liu
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Huaxu Shao
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chengcheng Chen
- China Electronic Product Reliability and Environmental Testing Research Institute (CEPREI), Guangzhou, 510610, P. R. China
| | - Caiyun Wang
- Department ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia
| | - Yijing Wang
- Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
The preparation and displacement performances of a hollow structure microsphere with swelling–deswelling properties for enhanced oil recovery (EOR). Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03712-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Liu C, Zhang C, Yin G, Zhang T, Wang W, Ou G, Jin H, Chen Z. A Three-Dimensional Branched TiO 2 Photoanode with an Ultrathin Al 2O 3 Passivation Layer and a NiOOH Cocatalyst toward Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13301-13310. [PMID: 33723983 DOI: 10.1021/acsami.1c00948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoelectrochemical (PEC) water splitting provides an alternative strategy for clean and renewable hydrogen production; however, the practical application is severely limited by the low solar conversion. Herein, a novel and simple strategy has been developed to construct a 3D branched TiO2 photoanode with an ultrathin Al2O3 passivation layer and NiOOH cocatalyst. The structure and properties of the as-obtained photoanodes are explored by X-ray diffraction, Mott-Schottky, electrochemical impedance spectroscopy, and open circuit voltage measurements. The as-obtained B-TiO2/Al2O3/NiOOH ternary heterojunction with a high-quality contact interface exhibits improved light absorption ability, an enhanced photocurrent density of 1.42 mA/cm2 at 1.23 VRHE, high conversion efficiency (0.44% at 0.80 VRHE), and excellent stability compared to pristine TiO2 and alone-Al2O3 or NiOOH decorated TiO2 photoanodes. Therefore, this work could offer a new approach to designing and fabricating high-quality contact interfaces between photoelectrodes and various cocatalysts.
Collapse
Affiliation(s)
- Changhai Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chao Zhang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ge Yin
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Zhang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenchang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guofu Ou
- Institute of Flow-Induced Corrosion and Intelligent Prevention, Changzhou University, Changzhou 213164, China
| | - Haozhe Jin
- The Flow Induced Corrosion Institution, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
18
|
Huang S, Ouyang T, Zheng B, Dan M, Liu Z. Enhanced Photoelectrocatalytic Activities for CH
3
OH‐to‐HCHO Conversion on Fe
2
O
3
/MoO
3
: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Bang‐Feng Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| |
Collapse
|
19
|
Huang S, Ouyang T, Zheng B, Dan M, Liu Z. Enhanced Photoelectrocatalytic Activities for CH
3
OH‐to‐HCHO Conversion on Fe
2
O
3
/MoO
3
: Fe‐O‐Mo Covalency Dominates the Intrinsic Activity. Angew Chem Int Ed Engl 2021; 60:9546-9552. [DOI: 10.1002/anie.202101058] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng Huang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Bang‐Feng Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road 510006 Guangzhou P. R. China
| |
Collapse
|
20
|
Kumari N, Kumar S, Karmacharya M, Dubbu S, Kwon T, Singh V, Chae KH, Kumar A, Cho YK, Lee IS. Surface-Textured Mixed-Metal-Oxide Nanocrystals as Efficient Catalysts for ROS Production and Biofilm Eradication. NANO LETTERS 2021; 21:279-287. [PMID: 33306397 DOI: 10.1021/acs.nanolett.0c03639] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Next-generation catalysts are urgently needed to tackle the global challenge of antimicrobial resistance. Existing antimicrobials cannot function in the complex and stressful chemical conditions found in biofilms, and as a result, they are unable to infiltrate, diffuse into, and eradicate the biofilm and its associated matrix. Here, we introduce mixed-FeCo-oxide-based surface-textured nanostructures (MTex) as highly efficient magneto-catalytic platforms. These systems can produce defensive ROS over a broad pH range and can effectively diffuse into the biofilm and kill the embedded bacteria. Because the nanostructures are magnetic, biofilm debris can be scraped out of the microchannels. The key antifouling efficacy of MTex originates from the unique surface topography that resembles that of a ploughed field. These are captured as stable textured intermediates during the oxidative annealing and solid-state conversion of β-FeOOH nanocrystals. These nanoscale surfaces will advance progress toward developing a broad array of new enzyme-like properties at the nanobio interface.
Collapse
Affiliation(s)
- Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), and ▽Department of Biomedical Engineering, School of Life Sciences and ⊥Department of Chemical Engineering, School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), and ▽Department of Biomedical Engineering, School of Life Sciences and ⊥Department of Chemical Engineering, School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Varsha Singh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), and ▽Department of Biomedical Engineering, School of Life Sciences and ⊥Department of Chemical Engineering, School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
21
|
Chen M, Mo F, Meng H, Wang C, Guo J, Fu Y. Efficient Curing Sacrificial Agent-Induced Dual-Heterojunction Photoelectrochemical System for Highly Sensitive Immunoassay. Anal Chem 2021; 93:2464-2470. [DOI: 10.1021/acs.analchem.0c04485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Jiang J, Wang H, An H, Du G. Controlled Growth of CdS Nanostep Structured Arrays to Improve Photoelectrochemical Performance. Front Chem 2020; 8:577582. [PMID: 33363104 PMCID: PMC7758423 DOI: 10.3389/fchem.2020.577582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023] Open
Abstract
CdS nanostep-structured arrays were grown on F-doped tin oxide-coated glasses using a two-step hydrothermal method. The CdS arrays consisted of a straight rod acting as backbone and a nanostep-structured morphology on the surface. The morphology of the samples can be tuned by varying the reaction parameters. The phase purity, morphology, and structure of the CdS nanostep-structured arrays were characterized by X-ray diffraction and field emission scanning electron microscopy. The light and photoelectrochemical properties of the samples were estimated by a UV-Vis absorption spectrum and photoelectrochemical cells. The experimental results confirmed that the special nanostep structure is crucial for the remarkable enhancement of the photoelectrochemical performance. Compared with CdS rod arrays, the CdS nanostep-structured arrays showed increased absorption ability and dramatically improved photocurrent and energy conversion efficiency. This work may provide a new approach for improving the properties of photoelectrodes in the future.
Collapse
Affiliation(s)
- Jiangang Jiang
- College of Science, Northwest Agriculture and Forestry University, Shaanxi, China
| | | | | | | |
Collapse
|
23
|
Wang F, Xiao L, Chen J, Chen L, Fang R, Li Y. Regulating the Electronic Structure and Water Adsorption Capability by Constructing Carbon-Doped CuO Hollow Spheres for Efficient Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2020; 13:5711-5721. [PMID: 32857460 DOI: 10.1002/cssc.202001884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Copper(II) oxide featuring a narrow bandgap and low toxicity has been frequently applied in the visible-light-driven photocatalytic hydrogen evolution, but it suffers from large intrinsic overpotential and low water adsorption capacity. Herein, we report a self-templated strategy for the preparation of carbon-doped CuO hollow spheres (C-CuO HSs) through thermal transformation of a hierarchical MOF. The hierarchical Cu-MOFs not only act as a template to form interior voids during the thermal transformation, but also serve as precursors to dope C atoms into the CuO lattice. The as-synthesized C-CuO HSs exhibits remarkable photocatalytic performance with a H2 evolution rate of 67.3 mmol/g/h and the apparent quantum efficiency of 25.3 % at 520 nm in the present of eosin-Y photosensitizer. The high performance of C-CuO HSs is attributed to the hierarchical porous structure and modulated electronic structure of CuO by C-doping with well exposed reactive sites, high water adsorption capability, and low water reduction reaction barrier. The results presented in this work might shed light on the design of high-performance photocatalysts for various energy-related applications.
Collapse
Affiliation(s)
- Fengliang Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Linghan Xiao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jianmin Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|