1
|
Pan S, Xie Q, Wang X, Huang R, Lu Y, Ni C, Hu J. Controllable Double Difluoromethylene Insertions into S-Cu Bonds: (Arylthio)tetrafluoroethylation of Aryl Iodides with TMSCF 2Br. Angew Chem Int Ed Engl 2024; 63:e202400839. [PMID: 38358953 DOI: 10.1002/anie.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
A new method of constructing "ArSCF2CF2Cu" from ArSCu and TMSCF2Br (TMS=trimethylsilyl) has been developed. The cross-coupling reactions of the obtained "ArSCF2CF2Cu" with diverse aryl iodides (Ar'I) provide an efficient access to Ar'CF2CF2SAr. Mechanistic studies demonstrate that the "ArSCF2CF2Cu" species were generated through controllable double difluoromethylene insertions into ArS-Cu bonds rather than the 1,2-addition of ArSCu to tetrafluoroethylene.
Collapse
Affiliation(s)
- Shitao Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiu Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Rumin Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Yuhao Lu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Wang Q, Tao Q, Dong H, Ni C, Xie X, Hu J. Fluorination Triggers Fluoroalkylation: Nucleophilic Perfluoro‐
tert
‐butylation with 1,1‐Dibromo‐2,2‐bis(trifluoromethyl)ethylene (DBBF) and CsF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Quan Tao
- State Key Laboratory of Functional Materials of Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Hui Dong
- State Key Laboratory of Functional Materials of Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials of Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
3
|
Wang Q, Tao Q, Dong H, Ni C, Xie X, Hu J. Fluorination Triggers Fluoroalkylation: Nucleophilic Perfluoro-tert-butylation with 1,1-Dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF) and CsF. Angew Chem Int Ed Engl 2021; 60:27318-27323. [PMID: 34714973 DOI: 10.1002/anie.202113727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Perfluoro-tert-butylation reaction has long remained a challenging task. We now report the use of 1,1-dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF) as a practical reagent for perfluoro-tert-butylation reactions for the first time. Through a consecutive triple-fluorination process with DBBF and CsF, the (CF3 )3 C- species can be liberated and observed, which is able to serve as a robust nucleophilic perfluoro-tert-butylating agent for various electrophiles. The power of this synthetic protocol is evidenced by the efficient synthesis of structurally diverse perfluoro-tert-butylated molecules. Multiple applications demonstrate the practicability of this method, as well as the superiority of perfluoro-tert-butylated compounds as sensitive probes. The perfluoro-tert-butylated product was successfully applied in 1 H- and 19 F-magnetic resonance imaging (MRI) experiment with an ultra-low field (ULF) MRI system.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Quan Tao
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hui Dong
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Li Y, Zhang CL, Huang WH, Sun N, Hao M, Neumann H, Beller M. A general strategy for the synthesis of α-trifluoromethyl- and α-perfluoroalkyl-β-lactams via palladium-catalyzed carbonylation. Chem Sci 2021; 12:10467-10473. [PMID: 34447539 PMCID: PMC8361786 DOI: 10.1039/d1sc02212a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-β-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated β-lactams in high yields.
Collapse
Affiliation(s)
- Yang Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University No. 19 Jinhua South Road 710048 Xi'an China
- Leibniz-Institut für Katalyse e.V. RostockAlbert-Einstein-Straße 29a 18059 Rostock Germany
| | - Cai-Lin Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University No. 19 Jinhua South Road 710048 Xi'an China
| | - Wei-Heng Huang
- Leibniz-Institut für Katalyse e.V. RostockAlbert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ning Sun
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University No. 19 Jinhua South Road 710048 Xi'an China
| | - Meng Hao
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University No. 19 Jinhua South Road 710048 Xi'an China
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. RostockAlbert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. RostockAlbert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
5
|
Pang Y, Lee JW, Kubota K, Ito H. Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009844] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yadong Pang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Joo Won Lee
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
6
|
Pang Y, Lee JW, Kubota K, Ito H. Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2020; 59:22570-22576. [DOI: 10.1002/anie.202009844] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yadong Pang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Joo Won Lee
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
7
|
Dasgupta A, Stefkova K, Babaahmadi R, Gierlichs L, Ariafard A, Melen RL. Triarylborane-Catalyzed Alkenylation Reactions of Aryl Esters with Diazo Compounds. Angew Chem Int Ed Engl 2020; 59:15492-15496. [PMID: 32485034 PMCID: PMC7497215 DOI: 10.1002/anie.202007176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Herein we report a facile, mild reaction protocol to form carbon-carbon bonds in the absence of transition metal catalysts. We demonstrate the metal-free alkenylation reactions of aryl esters with α-diazoesters to give highly functionalized enyne products. Catalytic amounts of tris(pentafluorophenyl)borane (10-20 mol %) are employed to afford the C=C coupled products (31 examples) in good to excellent yields (36-87 %). DFT studies were used to elucidate the mechanism for this alkenylation reaction.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Katarína Stefkova
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Rasool Babaahmadi
- School of Natural Sciences – ChemistryUniversity of TasmaniaPrivate Bag 75Hobart, Tasmania7001Australia
| | - Lukas Gierlichs
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Alireza Ariafard
- School of Natural Sciences – ChemistryUniversity of TasmaniaPrivate Bag 75Hobart, Tasmania7001Australia
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| |
Collapse
|
8
|
Dasgupta A, Stefkova K, Babaahmadi R, Gierlichs L, Ariafard A, Melen RL. Triarylboran‐katalysierte Alkenylierungen von Arylestern mit Diazoverbindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| | - Katarína Stefkova
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| | - Rasool Babaahmadi
- School of Natural Sciences-Chemistry University of Tasmania Private Bag 75 Hobart, Tasmania 7001 Australien
| | - Lukas Gierlichs
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| | - Alireza Ariafard
- School of Natural Sciences-Chemistry University of Tasmania Private Bag 75 Hobart, Tasmania 7001 Australien
| | - Rebecca L. Melen
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT, Cymru/Wales UK
| |
Collapse
|