1
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:5382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Santos MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Costa Pessoa J. Binding of V IV O 2+ , V IV OL, V IV OL 2 and V V O 2 L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications. Chemistry 2022; 28:e202200105. [PMID: 35486702 DOI: 10.1002/chem.202200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.
Collapse
Affiliation(s)
- Marino F A Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Andreia C P Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
3
|
Li J, Xia Q, Guo H, Fu Z, Liu Y, Lin S, Liu J. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor-Resident Living Immunotherapeutics. Angew Chem Int Ed Engl 2022; 61:e202202409. [PMID: 35403784 DOI: 10.1002/anie.202202409] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/10/2022]
Abstract
An approach of decorating bacteria with triple immune nanoactivators is reported to develop tumor-resident living immunotherapeutics. Under cytocompatible conditions, tumor-specific antigens and checkpoint blocking antibodies are simultaneously conjugated onto bacterial surface and then polydopamine nanoparticles are formed via in situ dopamine polymerization. In addition to serving as a linker, polydopamine with its photothermal effect can repolarize tumor-associated macrophages to a pro-inflammatory phenotype. The linked antigens promote the maturation of dendritic cells and generate tumor-specific immune responses, while the anchored antibodies block immune checkpoints and activate cytotoxic T lymphocytes. Decorated bacteria show spatiotemporal tumor retention and proliferation-dependent drug release, achieving potent antitumor effects in two antigen-overexpressing tumor models. This work provides a versatile platform to prepare multimodal and long-acting therapeutics for cancer immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiyan Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenzhen Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong Liu
- National Center for NanoScience & Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Patra D, Pal A, Nath S, Kundu R, Drew MGB, Ghosh T. Insights into the transformation of VO 2+ motif to VO 3+, V 2O 34+ and VO 2+ motifs and their interconversion along with a detailed mechanistic study of their anti-cancer activity in SiHa cervical cancer cells. J Inorg Biochem 2022; 234:111900. [PMID: 35717882 DOI: 10.1016/j.jinorgbio.2022.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The basic criteria for the formation of complexes with VO3+, V2O34+ and VO2+ motifs from the VO2+ motif and their interconversion were explored utilizing two multidentate O,N-donor hydrazone ligands namely, E-2-Hydroxy-N'-(4-oxopentan-2-ylidine)benzohydrazide (H3L1) and E-2-Hydroxy-N'-(4-oxo-4-phenylbutan-2-ylidine)benzohydrazide (H3L2), derived from the condensation of 2-hydroxybenzoylhydrazide with acetylacetone and benzoylacetone respectively. Under aerobic condition, the possibility of forming complexes with different motifs in different solvents with varying pH was examined theoretically by computational methods with results that were verified experimentally. This study reveals that under aerobic condition, complexes with VO3+ (1,2) and V2O34+ (3, 4) motifs were formed in protic CH3OH and neutral CHCl3 solvent respectively while the formation of complexes (5-14) with VO2+ motif required protic CH3OH solvent and higher pH (≥ 7). Interconversion of VO3+, V2O34+ and VO2+ motifs are associated with specific acid-base equilibria, substantiated by 51V NMR titrations. Complexes containing these three motifs exhibited promising in vitro anticancer activity in SiHa cervical cancer cells without affecting healthy cells; among them complexes (5-14) with VO2+ motif are more potent. A detailed systematic mechanistic study was carried out, utilizing the two most potent complexes 5 and 6 (IC50 = 13, 6 μM respectively), which indicates that cytotoxicity and anti-proliferative activity of these complexes are manifested through oxidative stress induced apoptotic pathways (caspase mediated).
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Asmita Pal
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Sonali Nath
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Michael G B Drew
- Department of Chemistry, The University of Reading, PO Box 224, Whiteknights, Reading, RG6 6AD, UK
| | - Tapas Ghosh
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India.
| |
Collapse
|
5
|
Li J, Xia Q, Guo H, Fu Z, Liu Y, Lin S, Liu J. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor‐Resident Living Immunotherapeutics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- School of Life Sciences Hainan University Haikou 570228 China
| | - Qing Xia
- Department of Oncology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Haiyan Guo
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Zhenzhen Fu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yong Liu
- National Center for NanoScience & Technology Chinese Academy of Sciences Beijing 100190 China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
6
|
Zandvakili T, Fatemi SJ, Ebrahimipour SY, Ebrahimnejad H, Dusek M, Eigner V. Synthesis, Structural Elucidation, In Vitro Antibacterial Activity and Antioxidant Property of a Novel Oxo‐Vanadium(V) Dimer Complex Incorporating Deferasirox Ligand. ChemistrySelect 2021. [DOI: 10.1002/slct.202102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tayebe Zandvakili
- Department of Chemistry, Faculty of Science Shahid Bahonar University of Kerman Kerman Iran
| | - S. Jamil Fatemi
- Department of Chemistry, Faculty of Science Shahid Bahonar University of Kerman Kerman Iran
| | - S. Yousef Ebrahimipour
- Department of Chemistry, Faculty of Science Shahid Bahonar University of Kerman Kerman Iran
| | - Hadi Ebrahimnejad
- Department of Veterinary Medicine Shahid Bahonar University of Kerman Kerman Iran
| | - Michal Dusek
- Institute of Physics ASCR, v.v.i. Na Slovance 2 182 21 Praha 8 Czech Republic
| | - Vaclav Eigner
- Institute of Physics ASCR, v.v.i. Na Slovance 2 182 21 Praha 8 Czech Republic
| |
Collapse
|
7
|
Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. METALS 2021. [DOI: 10.3390/met11101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, therapeutic metallodrugs have become substantially effective in the treatment of cancer. Thus, developing new effective anticancer drugs is a significant research area against the continuing increase in cancers worldwide. In the search for heterobimetallic prodrugs containing V/Cu, a new cyclo-tetravanadate was synthesized and characterized by UV-visible and FTIR spectroscopies and single-crystal X-ray diffraction. L-Glutamine and 1,10-phenanthroline allow the crystallization of [Cu(L-Gln)(phen)(H2O)]4[V4O12]∙8(H2O) (1), in which the cyclo-tetravanadate acts as a free anion. Density functional theory (DFT) calculations were carried out to characterize the frontier molecular orbitals and molecular electrostatic potential. Global reactivity indexes were calculated and analyzed to give insight into the cyclo-tetravanadate anion and complex counterions interactions. Also, using Bader’s theory of atoms in molecules (AIM), non-covalent interactions were analyzed. Docking analysis with the Casiopeina-like complex resulting from the hydrolysis of compound 1 provided insights into these complex potential anticancer activities by interacting with DNA/tRNA via H-bonds and hydrophobic interactions. The release of both components could act together or separately, acting as prodrugs with potential dual antineoplastic activities.
Collapse
|
8
|
Sun YW, Liang H, Zong KQ, Che X, Meng DL. Green and facile preparation and dual-enhancement cytotoxicity of eupatilin loaded on hollow gold nanoparticles under near-infrared light. NEW J CHEM 2021. [DOI: 10.1039/d1nj02276h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using NIR irradiation, gold nanomaterials loaded with natural products can achieve targeted release as well as better anti-tumor activity.
Collapse
Affiliation(s)
- Yi-wei Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Hui Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Kun-qi Zong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xin Che
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China
| | - Da-li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|