1
|
Yu G, Yu K, Wang X, Zhang C, Luo Y, Huo X, Yang Y. Clc-db: an open-source online database of chiral ligands and catalysts. J Cheminform 2025; 17:45. [PMID: 40181386 PMCID: PMC11969900 DOI: 10.1186/s13321-025-00991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
The design and optimization of chiral ligands and catalysts are fundamental to advancing asymmetric catalysis, a critical area in organic chemistry with wide-ranging impacts across scientific disciplines. Traditional experimental approaches, while essential, are often hindered by their slow pace and complexity. Recent advancements have demonstrated that computational methods, particularly machine learning, offer transformative potential by significantly accelerating these processes through enhanced prediction and modeling capabilities. However, limitations such as data scarcity and model inaccuracies continue to challenge their broader application. To address these issues, we present the Chiral Ligand and Catalyst Database (CLC-DB), the first open-source, comprehensive database specifically designed for chiral ligands and catalysts. CLC-DB contains 1,861 molecules spanning 32 distinctive chiral ligand and catalyst categories, with each entry annotated with 34 types of curated information, validated by chemical experts and linked to authoritative chemical databases. The database features a user-friendly interface that supports efficient single and batch searches, as well as an integrated, high-performance online molecular clustering tool to facilitate computational analyses. CLC-DB is freely accessible at https://compbio.sjtu.edu.cn/services/clc-db , where all data are available for download.
Collapse
Affiliation(s)
- Gufeng Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiwen Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xi Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Computer Science, New York University, New York, 10012, United States of America
| | - Chenxi Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Yang
- Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Daniel FL, Srinivasan K. Intramolecular 1,2-Aroyl Migration in Spiro Donor-Acceptor Cyclopropanes: Formation of 1,4-Naphthoquinones and 1-Naphthols as Ring-Expansion Products. J Org Chem 2024; 89:5304-5313. [PMID: 38593430 DOI: 10.1021/acs.joc.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Most of the known rearrangement reactions of donor-acceptor cyclopropanes (DACs) involve the migration of cationic carbon atom to anionic carbon or heteroatoms in 1,3- or 1,4-positions. In the present work, we observed that spiro DACs based on 1,3-indanedione or 1-indanone moiety undergo intramolecular 1,2-aroyl migration when treated with titanium(IV) chloride to afford 1,4-naphthoquinones and α-naphthols readily. The reactions take place through the formation of putative 1,3-dipolar intermediates, followed by cleavage and migration of the aroyl group to the adjacent carbon to afford the ring-expansion products.
Collapse
Affiliation(s)
- Franklin Leslin Daniel
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
3
|
Xu J, Song Y, Yang J, Yang B, Su Z, Lin L, Feng X. Sterically Hindered and Deconjugative α-Regioselective Asymmetric Mannich Reaction of Meinwald Rearrangement-Intermediate. Angew Chem Int Ed Engl 2023; 62:e202217887. [PMID: 36700493 DOI: 10.1002/anie.202217887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Compared to γ-addition, the α-addition of α-branched β,γ-unsaturated aldehydes faces larger steric hindrance and disrupts the π-π conjugation, which might be why very few examples are reported. In this article, a highly diastereo- and enantioselective α-regioselective Mannich reaction of isatin-derived ketimines with α-, β- or γ-branched β,γ-unsaturated aldehydes, generated in situ from Meinwald rearrangement of vinyl epoxides, is realized by using chiral N,N'-dioxide/ScIII catalysts. A series of chiral α-quaternary allyl aldehydes and homoallylic alcohols with vicinal multisubstituted stereocenters are constructed in excellent yields, good d.r. and excellent ee values. Experimental studies and DFT (density functional theory) calculations reveal that the large steric hindrance of the ligand and the Boc (tButyloxy carbonyl) protecting group of imines are critical factors for the α-regioselectivity.
Collapse
Affiliation(s)
- Jinxiu Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Jia Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Bingqian Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
4
|
Zhang J, Xu W, Xu MH. Low Coordination State Rh I -Complex as High Performance Catalyst for Asymmetric Intramolecular Cyclopropanation: Construction of penta-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202216799. [PMID: 36602264 DOI: 10.1002/anie.202216799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
A simple, broad-scope rhodium(I)/chiral diene catalytic system for challenging asymmetric intramolecular cyclopropanation of various tri-substituted allylic diazoacetates was successfully developed. The low coordination state RhI -complex exhibits an extraordinarily high degree of tolerance to the variation in the extent of substitution of the allyl double bond, thus allowing the efficient construction of a wide range of penta-substituted, fused-ring cyclopropanes bearing three contiguous stereogenic centers, including two quaternary carbon stereocenters, in a highly enantioselective manner with ease at catalyst loading as low as 0.1 mol %. The stereoinduction mode of this RhI -carbene-directed asymmetric intramolecular cyclopropanation was investigated by DFT calculations, indicating that π-π stacking interactions between the aromatic rings of chiral diene ligand and diazo substrate play a key role in the control of the reaction enantioselectivity.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weici Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Xiao YQ, Li MM, Zhou ZX, Li YJ, Cao MY, Liu XP, Lu HH, Rao L, Lu LQ, Beauchemin AM, Xiao WJ. Taming Chiral Quaternary Stereocenters via Remote H-Bonding Stereoinduction in Palladium-Catalyzed (3+2) Cycloadditions. Angew Chem Int Ed Engl 2023; 62:e202212444. [PMID: 36377924 DOI: 10.1002/anie.202212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Ring-opening transformations of donor-acceptor (D-A) cyclopropanes enable the rapid assembly of complex molecules. However, the enantioselective formation of chiral quaternary stereocenters using substrates bearing two different acceptors remains a challenge. Herein, we describe the first palladium-catalyzed highly diastereo- and enantioselective (3+2) cycloaddition of vinyl cyclopropanes bearing two different electron-withdrawing groups, a subset of D-A cyclopropanes. The key to the success of this reaction is the remote stereoinduction through hydrogen bond from chiral ligands, which thereby addressed the aforementioned challenge. A variety of chiral five-membered heterocycles were produced in good yields and with high stereoselectivity (up to 99 % yields, 99 : 1 er and >19 : 1 dr). In-depth mechanistic investigations, including control experiments and theoretical calculations, revealed the origin of the stereoselectivity and the importance of H-bonding in stereocontrol.
Collapse
Affiliation(s)
- Yu-Qing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Miao-Miao Li
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Zheng-Xin Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yu-Jie Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Meng-Yue Cao
- School of Science, Westlake University, Hangzhou, 310024, China
| | - Xiao-Peng Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Hai-Hua Lu
- School of Science, Westlake University, Hangzhou, 310024, China
| | - Li Rao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - André M Beauchemin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
6
|
Qiao J, Wang S, Liu X, Feng X. Enantioselective [3+2] Cycloaddition of Donor-Acceptor Aziridines and Imines to Construct 2,5-trans-Imidazolidines. Chemistry 2023; 29:e202203757. [PMID: 36602265 DOI: 10.1002/chem.202203757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
An enantioselective [3+2] cycloaddition of donor-acceptor aziridines with N-aryl protected imines was developed with a Ni(ClO4 )2 ⋅ 6H2 O/N,N'-dioxide catalyst system, providing a broad range of chiral trans-substituted imidazolidine compounds with good yields and excellent enantioselectivities (up to 99 % yield, up to 98 % ee). Control experiments indicated that the products could offer excellent diastereoselectivities with the control of chiral Ni(II)-N,N'-dioxide complex and the interaction of the substrates. The possible catalytic process was proposed to rationalize the stereocontrol.
Collapse
Affiliation(s)
- Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Shiyu Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
7
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor-Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2023; 62:e202214390. [PMID: 36322458 PMCID: PMC10099577 DOI: 10.1002/anie.202214390] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/05/2022]
Abstract
A novel class of highly activated donor-acceptor cyclopropanes bearing only a single, vinylogous acceptor is presented. These strained moieties readily undergo cycloadditions with aldehydes, ketones, thioketones, nitriles, naphth-2-ols and various other substrates to yield the corresponding carbo- and heterocycles. Diastereocontrol can be achieved through the choice of catalyst (Brønsted or Lewis acid). The formation of tetrahydrofurans was shown to be highly enantiospecific when chiral cyclopropanes are employed. A series of mechanistic and kinetic experiments was conducted to elucidate a plausible catalytic cycle and to rationalize the stereochemical outcome.
Collapse
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Oliver Hergert
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität FreiburgInstitute of Organic ChemistryAlbertstraße 2179104Freiburg (Breisgau)Germany
| |
Collapse
|
8
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor‐Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Oliver Hergert
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität Freiburg Institute of Organic Chemistry Albertstraße 21 79104 Freiburg (Breisgau) Germany
| |
Collapse
|
9
|
Kaur N, Kumar P, Hazra A, Banerjee P. Switchable Reactivity of Cyclopropane Diesters toward (3 + 3) and (3 + 2) Cycloadditions with Benzoquinone Esters. Org Lett 2022; 24:8249-8254. [DOI: 10.1021/acs.orglett.2c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Navpreet Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Arijit Hazra
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
10
|
Wang H, Zhang M, Xie M, Guo H. Lewis Acid Catalyzed (3+2)‐Cycloadditions of Chiral Pyrimidinyl‐Substituted Cyclopropanes with Nitrosoarenes or Silyl Enol Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hai‐Xia Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Mi‐Mi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Ming‐Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Hai‐Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
11
|
Wang Y, Zhang X, Han J, Li Q, Wei R, Ruiz DA, Liu LL, Tung C, Kong L. Crystalline Neutral Diboron Analogues of Cyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202117053. [DOI: 10.1002/anie.202117053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Jixing Han
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Qianli Li
- School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 P. R. China
| | - Rui Wei
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - David A. Ruiz
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
12
|
Wang Y, Zhang X, Han J, Li Q, Wei R, Ruiz DA, Liu LL, Tung CH, Kong L. Crystalline Neutral Diboron Analogues of Cyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Wang
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Xin Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Jixing Han
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qianli Li
- Liaocheng University Department of Chemistry and Chemical Engineering CHINA
| | - Rui Wei
- Southern University of Science and Technology Department of Chemistry CHINA
| | - David A Ruiz
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu Leo Liu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chen-Ho Tung
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Lingbing Kong
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
13
|
Zuo Z, Daniliuc CG, Studer A. Cooperative NHC/Photoredox Catalyzed Ring‐Opening of Aryl Cyclopropanes to 1‐Aroyloxylated‐3‐Acylated Alkanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhijun Zuo
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
14
|
Zuo Z, Daniliuc CG, Studer A. Cooperative NHC/Photoredox Catalyzed Ring-Opening of Aryl Cyclopropanes to 1-Aroyloxylated-3-Acylated Alkanes. Angew Chem Int Ed Engl 2021; 60:25252-25257. [PMID: 34580972 PMCID: PMC9298441 DOI: 10.1002/anie.202110304] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Indexed: 12/30/2022]
Abstract
Cyclopropanes are an important class of building blocks in organic synthesis. Herein, a ring-opening/arylcarboxylation/acylation cascade reaction for the 1,3-difunctionalization of aryl cyclopropanes enabled by cooperative NHC and organophotoredox catalysis is reported. The cascade works on monosubstituted cyclopropanes that are in contrast to the heavily investigated donor-acceptor cyclopropanes more challenging to be difunctionalized. The key step is a radical/radical cross coupling of a benzylic radical generated in the photoredox catalysis cycle with a ketyl radical from the NHC catalysis cycle. The transformation features metal-free reaction conditions and tolerates a diverse range of functionalities.
Collapse
Affiliation(s)
- Zhijun Zuo
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
15
|
Lv C, Meng X, Wang M, Zhang Y, Hu C, Kim CK, Su Z. Mechanism and Selectivity of Cyclopropanation of 3-Alkenyl-oxindoles with Sulfoxonium Ylides Catalyzed by a Chiral N, N'-Dioxide-Mg(II) Complex. J Org Chem 2021; 86:11683-11697. [PMID: 34343433 DOI: 10.1021/acs.joc.1c01199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism and stereoselectivity of an asymmetric cyclopropanation reaction between 3-alkenyl-oxindole and sulfoxonium ylide catalyzed by a chiral N,N'-dioxide-Mg(II) complex were explored using the B3LYP-D3(BJ) functional and the def2-TZVP basis set. The noncatalytic reaction occurred via a stepwise mechanism, with activation barriers of 21.6-23.5 kcal mol-1. The C2-Cα bond formed followed by the carbanion SN2 substitution, constructing a three-membered ring in spiro-cyclopropyl oxindoles, accompanied by the release of dimethylsulfoxide. The electron-withdrawing N-protecting t-butyloxy carbonyl (Boc) and acetyl (Ac) groups in isatin enhanced the local electrophilicity of the C2 atom and the repulsion between the two COPh groups in the reactants, contributing to high reactivity as well as good diastereoselectivity results. The N-Boc-3-phenacylideneoxindole coordinated to the chiral ligand (L-PiPr2) in a bidentate fashion, forming a hexacoordinate-Mg(II) complex as the reactive species. The origin of enantioselectivity was from the shielding effect of 2,6-diisopropylphenyl groups in the ligand toward the si-face of oxindole. The repulsion between the SO(CH3)2 and COPh groups in 3-alkenyl-oxindole and the neighboring ortho-iPr group in the ligand directed the re-face of ylide to attack the re-face of oxindole preferably, contributing to the high diastereoselectivity of the product. A metal-ion-ligand matching relationship was important for a good asymmetric induction effect of the chiral N,N'-dioxide-metal catalyst. A large chiral cavity in the Zn(II) catalyst weakened the shielding effect of 2,6-diisopropylphenyl groups in the ligand toward the prochiral face of oxindole, leading to inferior enantioselectivity observed in the experiment.
Collapse
Affiliation(s)
- Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiangxiang Meng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Min Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chan Kyung Kim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
16
|
Shao J, Luo Q, Bi H, Wang SR. Cooperation of Cis Vicinal Acceptors for Donor-Acceptor Cyclopropane Activation: TfOH-Promoted Ring-Opening/Aryl Shift Rearrangement to 3- and 5-Ylidenebutenolides. Org Lett 2021; 23:459-463. [PMID: 33399000 DOI: 10.1021/acs.orglett.0c03976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A convenient route to 3- and 5-ylidenebutenolides from readily available cis-2-acylcyclopropane-1-carboxylates is described. Upon exposure to TfOH, synergistic activation of the vicinal acceptors in cis-2-acylcyclopropane-1-carboxylates generates highly strained bicyclic oxocarbenium ion intermediates, which undergo the ring-opening/aryl shift/deprotonation cascade process to form the 3- or 5-ylidenebutenolides depending on the acyl group. On the other hand, the corresponding trans isomers, from which it is difficult to form such oxocarbenium ions, are inactive under the same conditions.
Collapse
Affiliation(s)
- Jiru Shao
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Qinyuan Luo
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Hongyan Bi
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, China
| |
Collapse
|