1
|
Deb M, Hassan N, Chowdhury D, Sanfui MH, Roy S, Bhattacharjee C, Majumdar S, Chattopadhyay PK, Singha NR. Nontraditional Redox Active Aliphatic Luminescent Polymer for Ratiometric pH Sensing and Sensing-Removal-Reduction of Cu(II): Strategic Optimization of Composition. Macromol Rapid Commun 2022; 43:e2200317. [PMID: 35798327 DOI: 10.1002/marc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Here, redox active aliphatic luminescent polymers (ALPs) are synthesized via polymerization of N,N-dimethyl-2-propenamide (DMPA) and 2-methyl-2-propenoic acid (MPA). The structures and properties of the optimum ALP3, ALP3-aggregate and Cu(I)-ALP3, ratiometric pH sensing, redox activity, aggregation enhanced emission (AEE), Stokes shift, and oxygen-donor selective coordination-reduction of Cu(II) to Cu(I) are explored via spectroscopic, microscopic, density functional theory-reduced density gradient (DFT-RDG), fluorescence quenching, adsorption isotherm-thermodynamics, and electrochemical methods. The intense blue and green fluorescence of ALP3 emerges at pH = 7.0 and 9.0, respectively, due to alteration of fluorophores from -C(═O)N(CH3 )2 / -C(═O)OH to -C(O- )═N+ (CH3 )2 / -C(═O)O- , inferred from binding energies at 401.32 eV (-C(O- )═N+ (CH3 )2 ) and 533.08 eV (-C(═O)O- ), significant red shifting in absorption and emission spectra, and peak at 2154 cm-1 . The n-π* communications in ALP3-aggregate, hydrogen bondings within 2.34-2.93 Å (intramolecular) in ALP3 and within 1.66-2.89 Å (intermolecular) in ALP3-aggregate, respectively, contribute significantly in fluorescence, confirmed from NMR titration, ratiometric pH sensing, AEE, excitation dependent emission, and Stokes shift and DFT-RDG analyses. For ALP3, Stokes shift, excellent limit of detection, adsorption capacity, and redox potentials are 13561 cm-1 /1.68 eV, 0.137 ppb, 122.93 mg g-1 , and 0.33/-1.04 V at pH 7.0, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
2
|
Hesari M, Ding Z. Efficient Near-Infrared Electrochemiluminescence from Au 18 Nanoclusters. Chemistry 2021; 27:14821-14825. [PMID: 34543484 DOI: 10.1002/chem.202102926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/12/2022]
Abstract
Bright, near-infrared electrochemiluminescence (NIR-ECL) of Au18 nanoclusters is reported herein. Spooling ECL and photoluminescence spectroscopy were used to track and link NIR emissions at 832 and 848 nm to three emissive species, Au18 0 *, Au18 1+ * and Au18 2+ *, with a considerably high ECL efficiency of 5.5 relative to that of the gold standard Ru(bpy)3 2+ /TPrA (with 5-6 % reported ECL efficiency). The unprecedentedly high efficiency is due to the overlapped oxidation potentials of Au18 0 and tri-n-propylamine as co-reactant, the exposed facets of Au18 0 gold core, and electrocatalytic loops. These discoveries will add a new member to the efficient NIR-ECL gold nanoclusters family and bring more potential applications.
Collapse
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7, Canada
| |
Collapse
|