1
|
Cen S, Li SS, Zhao Y, Zhao MX, Zhang Z. Catalytic Asymmetric Synthesis of Unnatural Axially Chiral Biaryl δ-Amino Acid Derivatives via a Chiral Phenanthroline-Potassium Catalyst-Enabled Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202407920. [PMID: 38877853 DOI: 10.1002/anie.202407920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 07/31/2024]
Abstract
Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.
Collapse
Affiliation(s)
- Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shan-Shan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
2
|
Yang X, Wei L, Wu Y, Zhou L, Zhang X, Chi YR. Atroposelective Access to 1,3-Oxazepine-Containing Bridged Biaryls via Carbene-Catalyzed Desymmetrization of Imines. Angew Chem Int Ed Engl 2023; 62:e202211977. [PMID: 36087019 DOI: 10.1002/anie.202211977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/02/2023]
Abstract
We disclose herein an atroposelective synthesis of novel bridged biaryls containing medium-sized rings via N-heterocyclic carbene organocatalysis. The reaction starts with addition of the carbene catalyst to the aminophenol-derived aldimine substrate. Subsequent oxidation and intramolecular desymmetrization lead to the formation of 1,3-oxazepine-containing bridged biaryls in good yields and excellent enantioselectivities. These novel bridged biaryl products can be readily transformed into chiral phosphite ligands. Preliminary density function theory calculations suggest that the origin of enantioselectivity arises from the more favorable frontier molecular orbital interactions in the transition state leading to the major product.
Collapse
Affiliation(s)
- Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuelin Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liejin Zhou
- Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, P. R. China
| |
Collapse
|
3
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
4
|
Luo Z, Wang W, Tang T, Zhang S, Huang F, Hu D, Tao L, Qian L, Liao J. Torsional Strain‐Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angew Chem Int Ed Engl 2022; 61:e202211303. [DOI: 10.1002/anie.202211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhang‐Hong Luo
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Wen‐Tao Wang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Tian‐Yi Tang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Sen Zhang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Fen Huang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Dan Hu
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Ling‐Fei Tao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Linghui Qian
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Jia‐Yu Liao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University Hangzhou 310018 China
| |
Collapse
|
5
|
Luo ZH, Wang WT, Tang TY, Zhang S, Huang F, Hu D, Tao LF, Qian L, Liao JY. Torsional Strain‐Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhang-Hong Luo
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Wen-Tao Wang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Tian-Yi Tang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Sen Zhang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Fen Huang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Dan Hu
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Ling-Fei Tao
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Linghui Qian
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Jia-Yu Liao
- Zhejiang University College of Pharmaceutical Sciences 866 Yuhangtang Road 310058 Hangzhou CHINA
| |
Collapse
|
6
|
Zhu D, Sun Y, Peng H, Li H, Yan Y, Kuang H. Enantioselective Synthesis of Axially Chiral Oxazole Biaryls via Cu‐Catalyzed Oxidation of Cyclic Diaryliodoniums. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daqian Zhu
- Guangdong Pharmaceutical University School of Pharmacy 280 Waihuan East Road 510006 Guangzhou CHINA
| | - Yameng Sun
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hui Peng
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hangni Li
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Yang Yan
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Haolin Kuang
- Guangdong Pharmaceutical University school of pharmacy CHINA
| |
Collapse
|
7
|
Construction of C−C Axial Chirality via Asymmetric Carbene Insertion into Arene C−H Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Li Z, Chen Y, Wang C, Xu G, Shao Y, Zhang X, Tang S, Sun J. Construction of C-C Axial Chirality via Asymmetric Carbene Insertion into Arene C-H Bonds. Angew Chem Int Ed Engl 2021; 60:25714-25718. [PMID: 34597448 DOI: 10.1002/anie.202110430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Indexed: 01/16/2023]
Abstract
By using diazonaphthoquinones and anilines as key reagents and through a point-to-axis chiral transfer strategy, the atroposelective synthesis via asymmetric C(sp2 )-H bond insertion reaction of arenes has been realized under rhodium catalysis, providing the resulting biaryl atropisomers in moderate to excellent yields with good enantiomeric ratios (up to 99:1). Further elaboration indicates this type of axially biaryl scaffold may have promising potentials in developing novel chiral ligands.
Collapse
Affiliation(s)
- Ziyong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Chen
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
9
|
Wang Z, Xie P, Xu Y, Hong X, Shi S. Low‐Temperature Nickel‐Catalyzed C−N Cross‐Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral
N
‐Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zi‐Chao Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) Shenyang Pharmaceutical University Shenyang 110016 China
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) Shenyang Pharmaceutical University Shenyang 110016 China
| | - Xin Hong
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
10
|
Wang ZC, Xie PP, Xu Y, Hong X, Shi SL. Low-Temperature Nickel-Catalyzed C-N Cross-Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral N-Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021; 60:16077-16084. [PMID: 33901337 DOI: 10.1002/anie.202103803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/14/2022]
Abstract
The transition-metal-catalyzed C-N cross-coupling has revolutionized the construction of amines. Despite the innovations of multiple generations of ligands to modulate the reactivity of the metal center, ligands for the low-temperature enantioselective amination of aryl halides remain a coveted target of catalyst engineering. Designs that promote one elementary reaction often create bottlenecks at other steps. We here report an unprecedented low-temperature (as low as -50 °C), enantioselective Ni-catalyzed C-N cross-coupling of aryl chlorides with sterically hindered secondary amines via a kinetic resolution process (s factor up to >300). A bulky yet flexible chiral N-heterocyclic carbene (NHC) ligand is leveraged to drive both oxidative addition and reductive elimination with low barriers and control the enantioselectivity. Computational studies indicate that the rotations of multiple σ-bonds on the C2 -symmetric chiral ligand adapt to the changing needs of catalytic processes. We expect this design would be widely applicable to diverse transition states to achieve other challenging metal-catalyzed asymmetric cross-coupling reactions.
Collapse
Affiliation(s)
- Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
11
|
Lanzi M, Dherbassy Q, Wencel-Delord J. Cyclic Diaryl λ 3 -Bromanes as Original Aryne Precursors. Angew Chem Int Ed Engl 2021; 60:14852-14857. [PMID: 33901330 DOI: 10.1002/anie.202103625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/18/2022]
Abstract
Despite the widespread application of hypervalent iodines, the corresponding λ3 -bromanes are less explored. Herein we report a general, safe, and high-yielding strategy to access cyclic diaryl λ3 -bromanes. These unique compounds feature reactivity that is appealing and complementary to that of λ3 -iodanes, generating arynes under mild reaction conditions and in the presence of a weak base. Accordingly, formal meta-selective transition-metal-free C-O and C-N couplings may be achieved. Mechanistic studies unambiguously support the aryne generation mechanism.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Quentin Dherbassy
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| |
Collapse
|
12
|
Lanzi M, Dherbassy Q, Wencel‐Delord J. Cyclic Diaryl λ
3
‐Bromanes as Original Aryne Precursors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042) Université de Strasbourg/Université de Haute Alsace ECPM 25 rue Becquerel 67087 Strasbourg France
| | - Quentin Dherbassy
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042) Université de Strasbourg/Université de Haute Alsace ECPM 25 rue Becquerel 67087 Strasbourg France
| | - Joanna Wencel‐Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042) Université de Strasbourg/Université de Haute Alsace ECPM 25 rue Becquerel 67087 Strasbourg France
| |
Collapse
|
13
|
Zhang C, Gao Y, Wang H, Zhou B, Ye S. Enantioselective Synthesis of Axially Chiral Benzothiophene/Benzofuran‐Fused Biaryls by N‐Heterocyclic Carbene Catalyzed Arene Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun‐Lin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yuan‐Yuan Gao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hai‐Ying Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bang‐An Zhou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Zhang CL, Gao YY, Wang HY, Zhou BA, Ye S. Enantioselective Synthesis of Axially Chiral Benzothiophene/Benzofuran-Fused Biaryls by N-Heterocyclic Carbene Catalyzed Arene Formation. Angew Chem Int Ed Engl 2021; 60:13918-13922. [PMID: 33851519 DOI: 10.1002/anie.202103415] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/13/2023]
Abstract
Axially chiral biaryl scaffolds are prevalent in natural products, chiral ligands, and organocatalysts. However, N-heterocyclic carbene (NHC) catalyzed de novo construction of an aromatic ring with concomitant axial chirality induction for the synthesis of biaryl atropisomers is far less developed, and the efficient synthesis of axially chiral tetra-ortho-substituted biaryls remains an unsolved problem under NHC catalysis. Reported here is an NHC-catalyzed de novo synthesis of axially chiral benzothiophene/benzofuran-fused biaryls from enals and 2-benzyl-benzothiophene/benzofuran-3-carbaldehydes through a [2+4] annulation, decarboxylation, and oxidative aromatization cascade with central-to-axial chirality conversion. The developed method provides efficient and general access to novel axially chiral benzothiophene/benzofuran-fused biaryls in high enantioselectivities and works well for the synthesis of tetra-ortho-substituted biaryls.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuan-Yuan Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bang-An Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|