1
|
Lin C, Zhang J, Sun Z, Guo Y, Chong Q, Zhang Z, Meng F. Cobalt-Catalyzed Enantioselective Alkenylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202405290. [PMID: 38818654 DOI: 10.1002/anie.202405290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Catalytic enantioselective alkenylation of aldehydes with easily accessible alkenyl halides promoted by a chiral cobalt complex derived from a newly developed tridentate bisoxazolinephosphine is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis and a general approach that enable rapid construction of highly diversified enantioenriched allylic alcohols containing a 1,1-, 1,2-disubstituted and trisubstituted alkene as well as axial stereogenicity in up to 99 % yield and 99 : 1 er without the need of preformation of alkenyl-metal reagents. DFT calculations revealed the origin of enantioselectivity.
Collapse
Affiliation(s)
- Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Zhao Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 1000871, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
3
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022; 61:e202205624. [DOI: 10.1002/anie.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
4
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
6
|
Kitabayashi A, Mizushima S, Higashida K, Yasuda Y, Shimizu Y, Sawamura M. Insights into the Mechanism of Enantioselective Copper‐Catalyzed Ring‐Opening Allylic Alkylation of Cyclopropanols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akito Kitabayashi
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Sho Mizushima
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Kosuke Higashida
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yuto Yasuda
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yohei Shimizu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
7
|
Zhou G, Shen X. Synthesis of Cyclopropenols Enabled by Visible-Light-Induced Organocatalyzed [2+1] Cyclization. Angew Chem Int Ed Engl 2022; 61:e202115334. [PMID: 34994996 DOI: 10.1002/anie.202115334] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Although the synthesis of common cyclopropenes has been well studied, the access to cyclopropenols is rather limited. Herein, we report the first synthesis of α-trifluoromethylated cyclopropenols via 2+1 cycloaddition reactions between alkynes and trifluoroacylsilanes, enabled by visible-light-induced organocatalysis. The novel ambiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes reacted efficiently with both activated and non-activated alkynes. The reaction features simple operation, mild conditions, broad substrate scope and good functional group tolerance. The synthetic potential of the reaction is highlighted by the gram-scale reactions and first synthesis of α-trifluoromethylated cyclopropanols through the combination of the 2+1 cyclization and high diastereoselective hydrogenation reaction in one pot.
Collapse
Affiliation(s)
- Gang Zhou
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Xiao Shen
- Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| |
Collapse
|
8
|
Zhou G, Shen X. Synthesis of Cyclopropenols Enabled by Visible‐Light‐Induced Organocatalyzed [2+1] Cyclization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gang Zhou
- Wuhan University Institute for Advanced Studies CHINA
| | - Xiao Shen
- Wuhan University Institute for Advanced Studies 299 Bayi Road 430072 Wuhan CHINA
| |
Collapse
|
9
|
Cohen Y, Marek I. Directed Regioselective Carbometallation of 1,2-Dialkyl-Substituted Cyclopropenes. Angew Chem Int Ed Engl 2021; 60:26368-26372. [PMID: 34617656 DOI: 10.1002/anie.202111382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 01/05/2023]
Abstract
A regio- and diastereoselective copper-catalyzed carbomagnesiation of 1,2-dialkylated cyclopropenes is reported. The regioselectivity is controlled by a subtle tethered Lewis basic moiety. The chelating moieties allow the differentiation between two electronically tantamount organometallic intermediates. Further functionalization grants access to polysubstituted stereodefined cyclopropanes bearing up to five alkyl groups.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
10
|
Zhang Q, Zhou S, Shi C, Yin L. Catalytic Asymmetric Allylic Substitution with Copper(I) Homoenolates Generated from Cyclopropanols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Si‐Wei Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chang‐Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
Zhang Q, Zhou SW, Shi CY, Yin L. Catalytic Asymmetric Allylic Substitution with Copper(I) Homoenolates Generated from Cyclopropanols. Angew Chem Int Ed Engl 2021; 60:26351-26356. [PMID: 34617380 DOI: 10.1002/anie.202110709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Indexed: 12/23/2022]
Abstract
By using copper(I) homoenolates as nucleophiles, which are generated through the ring-opening of 1-substituted cyclopropane-1-ols, a catalytic asymmetric allylic substitution with allyl phosphates is achieved in high to excellent yields with high enantioselectivity. Both 1-substituted cyclopropane-1-ols and allylic phosphates enjoy broad substrate scopes. Remarkably, various functional groups, such as ether, ester, tosylate, imide, alcohol, nitro, and carbamate are well tolerated. Moreover, the present method is nicely extended to the asymmetric construction of quaternary carbon centers. Some control experiments argue against a radical-based reaction mechanism and a catalytic cycle based on a two-electron process is proposed. Finally, the synthetic utilities of the product are showcased by means of the transformations of the terminal olefin group and the ketone group.
Collapse
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Si-Wei Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chang-Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
12
|
Cohen Y, Marek I. Directed Regioselective Carbometallation of 1,2‐Dialkyl‐Substituted Cyclopropenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Technion City Haifa 3200009 Israel
| |
Collapse
|
13
|
Hu Y, Zhang Z, Liu Y, Zhang W. Cobalt-Catalyzed Chemo- and Enantioselective Hydrogenation of Conjugated Enynes. Angew Chem Int Ed Engl 2021; 60:16989-16993. [PMID: 34062038 DOI: 10.1002/anie.202106566] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Asymmetric hydrogenation is one of the most powerful methods for the preparation of single enantiomer compounds. However, the chemo- and enantioselective hydrogenation of the relatively inert unsaturated group in substrates possessing multiple unsaturated bonds remains a challenge. We herein report a protocol for the highly chemo- and enantioselective hydrogenation of conjugated enynes while keeping the alkynyl bond intact. Mechanism studies indicate that the accompanying Zn2+ generated from zinc reduction of the CoII complex plays a critical role to initiate a plausible CoI /CoIII catalytic cycle. This approach allows for the highly efficient generation of chiral propargylamines (up to 99.9 % ee and 2000 S/C) and further useful chemical transformations.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
14
|
Hu Y, Zhang Z, Liu Y, Zhang W. Cobalt‐Catalyzed Chemo‐ and Enantioselective Hydrogenation of Conjugated Enynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|