1
|
Tu J, Liu Q, You S, Meng Z, Fang S, Yu B, Chen X, Zhou Y, Zeng L, Herrmann A, Chen G, Shen J, Zheng L, Ji J. Recombinant supercharged polypeptides for safe and efficient heparin neutralization. Biomater Sci 2023; 11:5533-5539. [PMID: 37395046 DOI: 10.1039/d3bm00628j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heparin is a widely used anticoagulant agent in the clinic. After application, its anticoagulant effect must be reversed to prevent potential side effects. Protamine sulfate (PS) is the only clinically licensed antidote that has been used for this purpose in the last 80 years, which, however, provokes severe adverse effects, such as systemic hypotension and even death. Herein, we demonstrate the potential of supercharged polypeptides as a promising alternative for protamine sulfate. A series of supercharged polypeptides with multiple positive charges was recombinantly produced, and the heparin-neutralizing performance of the polypeptides was evaluated in comparison with PS. It was found that increasing the number of charges significantly enhanced the ability to neutralize heparin and resist the screening effect induced by salt. In particular, the polypeptide bearing 72 charges (K72) exhibited an excellent heparin-neutralizing behavior that was comparable to that of PS. Further in vivo studies revealed that the heparin-triggered bleeding was almost completely alleviated by K72 while a negligible toxic effect was observed. Therefore, such recombinant supercharged polypeptides might replace protamine sulfate as heparin-reversal agents.
Collapse
Affiliation(s)
- Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shengye You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Binhong Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Xumin Chen
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lulu Zeng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
3
|
Wang X, Wang Y, Wang J, Li Z, Zhang J, Li J. In silico Design of Photoresponsive Peptide-based Hydrogel with Controllable Structural and Rheological Properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Sun J, Xiao L, Li B, Zhao K, Wang Z, Zhou Y, Ma C, Li J, Zhang H, Herrmann A, Liu K. Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021; 60:23687-23694. [PMID: 33886148 PMCID: PMC8596419 DOI: 10.1002/anie.202100064] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Adhesive hydrogels have been developed for wound healing applications. However, their adhesive performance is impaired dramatically due to their high swelling on wet tissues. To tackle this challenge, we fabricated a new type of non-swelling protein adhesive for underwater and in vivo applications. In this soft material, the electrostatic complexation between supercharged polypeptides with oppositely charged surfactants containing 3,4-dihydroxylphenylalanine or azobenzene moieties plays an important role for the formation of ultra-strong adhesive coacervates. Remarkably, the adhesion capability is superior to commercial cyanoacrylate when tested in ambient conditions. Moreover, the adhesion is stronger than other reported protein-based adhesives in underwater environment. The ex vivo and in vivo experiments demonstrate the persistent adhesive performance and outstanding behaviors for wound sealing and healing.
Collapse
Affiliation(s)
- Jing Sun
- Department of ChemistryTsinghua UniversityBeijing100084China
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Chao Ma
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Kai Liu
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
6
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|