1
|
Eck M, Schwab ST, Nelson TF, Wurst K, Iberl S, Schleheck D, Link C, Battagliarin G, Mecking S. Biodegradable High-Density Polyethylene-like Material. Angew Chem Int Ed Engl 2023; 62:e202213438. [PMID: 36480133 PMCID: PMC10107712 DOI: 10.1002/anie.202213438] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
We report a novel polyester material generated from readily available biobased 1,18-octadecanedicarboxylic acid and ethylene glycol possesses a polyethylene-like solid-state structure and also tensile properties similar to high density polyethylene (HDPE). Despite its crystallinity, high melting point (Tm =96 °C) and hydrophobic nature, polyester-2,18 is subject to rapid and complete hydrolytic degradation in in vitro assays with isolated naturally occurring enzymes. Under industrial composting conditions (ISO standard 14855-1) the material is biodegraded with mineralization above 95 % within two months. Reference studies with polyester-18,18 (Tm =99 °C) reveal a strong impact of the nature of the diol repeating unit on degradation rates, possibly related to the density of ester groups in the amorphous phase. Depolymerization by methanolysis indicates suitability for closed-loop recycling.
Collapse
Affiliation(s)
- Marcel Eck
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Simon Timm Schwab
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Taylor Frederick Nelson
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Katrin Wurst
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Steffen Iberl
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - David Schleheck
- Microbial Ecology and Limnic Microbiology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Christoph Link
- BASF SE, PMD/GB-B001, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Glauco Battagliarin
- BASF SE, PMD/GB-B001, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
2
|
Hu Y, Sang R, Vroemans R, Mollaert G, Razzaq R, Neumann H, Junge H, Franke R, Jackstell R, Maes BUW, Beller M. Efficient Synthesis of Novel Plasticizers by Direct Palladium-Catalyzed Di- or Multi-carbonylations. Angew Chem Int Ed Engl 2023; 62:e202214706. [PMID: 36468459 PMCID: PMC10107635 DOI: 10.1002/anie.202214706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Diesters are of fundamental importance in the chemical industry and are used for many applications, e.g. as plasticizers, surfactants, emulsifiers, and lubricants. Herein, we present a straightforward and efficient method for the selective synthesis of diesters via palladium-catalyzed direct carbonylation of di- or polyols with readily available alkenes. Key-to-success is the use of a specific palladium catalyst with the "built-in-base" ligand L16 providing esterification of all alcohols and a high n/iso ratio. The synthesized diesters were evaluated as potential plasticizers in PVC films by measuring the glass transition temperature (Tg ) via differential scanning calorimetry (DSC).
Collapse
Affiliation(s)
- Yuya Hu
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
- Organic Synthesis DivisionDepartment of ChemistryUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Rui Sang
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Robby Vroemans
- Organic Synthesis DivisionDepartment of ChemistryUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Guillaume Mollaert
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
- Organic Synthesis DivisionDepartment of ChemistryUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Rauf Razzaq
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Robert Franke
- Evonik Performance Materials GmbHPaul-Baumann-Straße 145772MarlGermany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum44780BochumGermany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Bert U. W. Maes
- Organic Synthesis DivisionDepartment of ChemistryUniversity of AntwerpGroenenborgerlaan 1712020AntwerpBelgium
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
3
|
Schunck NS, Mecking S. In Vivo Olefin Metathesis in Microalgae Upgrades Lipids to Building Blocks for Polymers and Chemicals. Angew Chem Int Ed Engl 2022; 61:e202211285. [PMID: 36062952 PMCID: PMC9827892 DOI: 10.1002/anie.202211285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/12/2023]
Abstract
Sustainable sources are key to future chemicals production. Microalgae are promising resources as they fixate carbon dioxide to organic molecules by photosynthesis. Thereby they produce unsaturated fatty acids as established raw materials for the industrial production of chemical building blocks. Although these renewable feedstocks are generated inside cells, their catalytic upgrading to useful products requires in vitro transformations. A synthetic catalysis inside photoautotrophic cells has remained elusive. Here we show that a catalytic conversion of renewable substrates can be realized directly inside living microalgae. Organometallic catalysts remain active inside the cells, enabling in vivo catalytic olefin metathesis as new-to-nature transformation. Stored lipids are converted to long-chain dicarboxylates as valuable building blocks for polymers. This is a key step towards the long-term goal of producing desired renewable chemicals in microalgae as living "cellular factories".
Collapse
Affiliation(s)
- Natalie S. Schunck
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Stefan Mecking
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
4
|
Xin S, Peng X, Zhang Y, Zheng A, Xia C, Lin M, Zhu B, Huang Z, Shu X. Spongy titanosilicate promotes the catalytic performance and reusability of WO 3 in oxidative cleavage of methyl oleate. RSC Adv 2022; 12:5135-5144. [PMID: 35425581 PMCID: PMC8981253 DOI: 10.1039/d1ra08501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
A tungsten containing catalyst catalyzed oxidative cleavage of methyl oleate (MO) by employing H2O2 as an oxidant and is known as an efficient approach for preparing high value-added chemicals, however, the tungsten leaching problem remains unresolved. In this work, a binary catalyst consisting of tungsten oxide (WO3) and spongy titanosilicate (STS) zeolite is proposed for MO oxidative cleavage. The function of STS in this catalyst is investigated. On the one hand, STS converts MO to 9,10-epoxystearate (MES), which further forms nonyl aldehyde (NA) and methyl azelaaldehydate (MAA) with the catalysis of WO3. In this way, MO oxidation and hydrolysis that generates unwanted diol product 9,10-dihydroxystearate (MDS) decreases obviously. On the other hand, STS decomposes peroxide and promotes the conversion of soluble peroxotungstate to insoluble polytungstate. Meanwhile, these tungsten species are allowed to precipitate on its surface instead of remaining in the liquid phase owing to its relative large specific area. Therefore, tungsten leaching can be reduced from 37.0% to 1.2%. Due to the cooperation of WO3 and STS, 94.4% MO conversion and oxidative cleavage product selectivity of 63.1% are achieved, and the WO3-STS binary catalyst maintains excellent catalytic performance for 8 recycling reactions.
Collapse
Affiliation(s)
- Shihao Xin
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Xinxin Peng
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Yao Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Aiguo Zheng
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Changjiu Xia
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Min Lin
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Bin Zhu
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Zuoxin Huang
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| | - Xingtian Shu
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing SINOPEC 100083 Beijing PR China
| |
Collapse
|
5
|
Kim IJ, Bayer T, Terholsen H, Bornscheuer U. α-Dioxygenases (α-DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. Chembiochem 2022; 23:e202100693. [PMID: 35107200 PMCID: PMC9305512 DOI: 10.1002/cbic.202100693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Indexed: 11/14/2022]
Abstract
Fatty aldehydes (FALs) can be derived from fatty acids (FAs) and related compounds and are frequently used as flavors and fragrances. Although chemical methods have been conventionally used, their selective biotechnological production aiming at more efficient and eco‐friendly synthetic routes is in demand. α‐Dioxygenases (α‐DOXs) are heme‐dependent oxidative enzymes biologically involved in the initial step of plant FA α‐oxidation during which molecular oxygen is incorporated into the Cα‐position of a FA (Cn) to generate the intermediate FA hydroperoxide, which is subsequently converted into the shortened corresponding FAL (Cn‐1). α‐DOXs are promising biocatalysts for the flavor and fragrance industries, they do not require NAD(P)H as cofactors or redox partner proteins, and they have a broad substrate scope. Here, we highlight recent advances in the biocatalytic utilization of α‐DOXs with emphasis on newly discovered cyanobacterial α‐DOXs as well as analytical methods to measure α‐DOX activity in vitro and in vivo.
Collapse
Affiliation(s)
- In Jung Kim
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Thomas Bayer
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Henrik Terholsen
- Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|