1
|
Liu T, Chen C, Pu Z, Huang Q, Jiang J, Han M, Chen W, Yu G, Sun Y, Huang S, Chen Q, Al-Enizi AM, Nafady A, Mu X, Mu S. Ultrafast Synthesis of Nanoscale Metal Borides for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202425257. [PMID: 39810492 DOI: 10.1002/anie.202425257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Nanoscale metal borides, with exceptional physicochemical properties, have been attracted widespread attention. However, traditional synthesis methods of metal borides often lead to surface coking and large particle sizes. Herein, we have employed a flash Joule heating (FJH) technique to enable the ultrafast synthesis of metal boride nanomaterials. The synthesized materials encompass a wide range of diverse categories, including alkaline-earth metal borides (CaB6), transition metal borides (TiB2, VB2, CrB2, MoB, MoB2, MnB2, MnB4, FeB, CoB, NiB), noble-metal borides (RuB2, RuB1.1), and rare-earth metal borides (LaB6, CeB6). As an example, the RuB2 demonstrates highly desirable electrocatalytic performance for all-pH hydrogen evolution reaction (HER). Especially, under the acidic condition, it exhibits an overpotential as low as 15 mV at a current density of 10 mA cm-2, with a nearly 100 % faradic efficiency. Additionally, in situ Raman spectra confirm that both Ru and B sites serve as active sites for the HER. Moreover, the stability of RuB2 can be further enhanced by optimizing the microenvironments of the anolyte composition (H+, K+). More importantly, the experimental and density functional theory (DFT) calculations reveal that the co-existence of H+ and K+ localized around the RuB2 plays a crucial role in further enhancing the stability.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Jiadong Jiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Wei Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Guangtao Yu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yuzhi Sun
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Qingjun Chen
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
2
|
Liu M, Chen X, Li S, Ni C, Chen Y, Su H. Dynamic-Cycling Zinc Sites Promote Ruthenium Oxide for Sub-Ampere Electrochemical Water Oxidation. NANO LETTERS 2024; 24:16055-16063. [PMID: 39641405 DOI: 10.1021/acs.nanolett.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Although iridium-based electrocatalysts are commonly regarded as the sole stable operating acidic oxygen evolution reaction (OER) catalysts in proton-exchange membrane water electrolysis (PEMWE) devices, their exorbitant cost and scarcity severely restrict their widespread application. Herein, we introduce a promising alternative to iridium: zinc-doped ruthenium dioxide (TE-Zn/RuO2), which exhibits remarkable and enduring activity for acidic OER. In situ characterizations elucidate that the dynamic cycling of zinc dopants serves as both electron acceptors and donors, facilitating the activation of Ru sites at low overpotentials while thwarting peroxidation at high overpotentials, thus concurrently achieving heightened activity and robust stability. Additionally, the incorporation of zinc induces weakened Ru-O covalency, thereby stabling *OOH intermediates and instigating a sustained adsorbate evolution mechanism, dramatically stabilizing the RuO2 lattice. Importantly, the TE-Zn/RuO2 catalyst as an anode exhibits good stability over 300 h at a water-splitting current of 500 mA cm-2 in the PEMWE device, underscoring its considerable promise for practical applications.
Collapse
Affiliation(s)
- Meihuan Liu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, Hunan, China
| | - Xiaoxia Chen
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Shiyu Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Chudi Ni
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yiwen Chen
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
3
|
Yusuf BA, Madusanka Jayawardana HMC, Yaseen W, Xie J, Meng S, Li Y, Xie M, Chen M, Xu Y. One Stone, Three-Birds Approach: Ultra-active Ru/N, S-MoO 2/CNTs Electrocatalyst for Overall Water Splitting in Wide Electrode Applications (NF, GC, and CC). Inorg Chem 2024; 63:16470-16482. [PMID: 39171999 DOI: 10.1021/acs.inorgchem.4c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The construction of exceptionally multifunctional electrocatalysts is essential for various applications, but it poses significant challenges. A novel electrocatalyst, denoted as Ru/N, S-MoO2/CNTs, was successfully synthesized using a combination of mechano-grinding and hydrothermal/calcination techniques. The Ru/N, S-MoO2/CNTs demonstrates ultrasmall overpotentials of 12 and 163 mV in NF, 51 and 167 mV in GCE, and 54 and 173 mV in CC for HER and OER, respectively, at a current density of 10 mA/cm2 in alkaline medium. To accomplish electrocatalytic OWS, a current density of 10 mA/cm2 can be obtained by using a cell voltage of 1.446 V. Theoretical studies demonstrated that the inclusion of Ru, N, and S triggers a change in the composition of MoO2; produces oxygen vacancies; and forms Ru, N, and S-oxygen-Mo catalytic centers. The combination of Ru, N, and S nanoclusters; Ru, N, and S-oxygen-Mo catalytic centers; and OVs-enriched MoO2 would position it among the top electrocatalysts.
Collapse
Affiliation(s)
- Bashir Adegbemiga Yusuf
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | | | - Waleed Yaseen
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Jiangke Graphene Research Institute Co., Ltd., Zhenjiang 212021, PR China
- Jiangsu Jiangke Composite Material Co., Ltd., Zhenjiang 212021, PR China
| | - Suci Meng
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Jiangke Graphene Research Institute Co., Ltd., Zhenjiang 212021, PR China
- Jiangsu Jiangke Composite Material Co., Ltd., Zhenjiang 212021, PR China
| | - Yongming Li
- Jiangsu Jin Tianchen New Material Co., Ltd. Zhenjiang, Zhenjiang 212000, PR China
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Bai X, Zhang X, Sun Y, Huang M, Fan J, Xu S, Li H. Low Ruthenium Content Confined on Boron Carbon Nitride as an Efficient and Stable Electrocatalyst for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308704. [PMID: 37489759 DOI: 10.1002/anie.202308704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2 , our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm-2 , suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.
Collapse
Affiliation(s)
- Xiaofang Bai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Xiuping Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Yujiao Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Mingcheng Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Shaoyi Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
6
|
Fu ZY, Xu HM, Li WH, Jin GP, Han SK. Phase Transformation from Amorphous RuS x to Ru-RuS 2 Hybrid Nanostructure for Efficient Water Splitting in Alkaline Media. Inorg Chem 2023; 62:583-590. [PMID: 36563110 DOI: 10.1021/acs.inorgchem.2c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ruthenium (Ru)-based materials, as a class of efficient hydrogen evolution reaction (HER) catalysts, play an important role in hydrogen generation by electrolysis of water in an alkaline solution for clean hydrogen energy. Hybrid nanostructure (HN) materials, which include two or more components with distinct functionality, show better performance than their individual materials, since HN materials can potentially integrate their advantages and overcome the weaknesses. However, it remains a challenge to construct Ru-based HN materials with desired crystal phases for enhanced HER performances. Herein, a series of new Ru-based HN materials (t-Ru-RuS2, S-Ru-RuS2, and T-Ru-RuS2) through phase engineering of nanomaterials (PEN) and chemical transformation are designed to achieve highly efficient HER properties. Owing to the plentiful formation of heterojunctions and amorphous/crystalline interfaces, the t-Ru-RuS2 HN delivers the most outstanding overpotential of 16 mV and owns a small Tafel slope of 29 mV dec-1 at a current density of 10 mA cm-2, which exceeds commercial Pt/C catalysts (34 mV, 38 mV dec-1). This work shows a new insight for HN and provides alternative opportunities in designing advanced electrocatalysts with low cost for HER in the hydrogen economy.
Collapse
Affiliation(s)
- Zi-Yu Fu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hou-Ming Xu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wan-Hong Li
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guan-Ping Jin
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
7
|
Tang H, Gu H, Li Z, Chai J, Qin F, Lu C, Yu J, Zhai H, Zhang L, Li X, Chen W. Engineering the Coordination Interface of Isolated Co Atomic Sites Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46401-46409. [PMID: 36183270 DOI: 10.1021/acsami.2c09107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of the coordination environment of the central metal atom is considered as an alternative way to enhance the performance of single-atom catalysts (SACs). Herein, we design an electrocatalyst with active sites of isolated Co atoms coordinated with four sulfur atoms supported on N-doped carbon frameworks (Co1-S4/NC), confirmed by high-angle annular dark-field scanning transmission electron microscope (HADDF-STEM) and synchrotron-radiation-based X-ray absorption fine structure (XAFS) spectroscopy. The Co1-S4/NC possesses higher hydrogen evolution reaction (HER) catalytic activity than other Co species and exceptional stability, which exhibits a small Tafel slope of 60 mV dec-1 and a low overpotential of 114 mV at 10 mA cm-2 during the HER in 0.5 M H2SO4 solution. Furthermore, through in situ X-ray absorption spectrum tests and density functional theory (DFT) calculations, we reveal the catalytic mechanism of Co1-S4 moieties and find that the increasing number of sulfur atoms in the Co coordination environment leads to a substantial reduction of the theoretical HER overpotential. This work may point a new direction for the synthesis, performance regulation, and practical application of single-metal-atom catalysts.
Collapse
Affiliation(s)
- Hao Tang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Hongfei Gu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zheyu Li
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
| | - Jing Chai
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Chenqi Lu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiayu Yu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Liang Zhang
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
- Center for Combustion Energy, Tsinghua University, Beijing100084, China
| | - Xinyuan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
8
|
Yang B, Luo D, Wu S, Zhang N, Ye J. Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:587-616. [PMID: 36212680 PMCID: PMC9543084 DOI: 10.1080/14686996.2022.2125827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
As green and sustainable methods to produce hydrogen energy, photocatalytic and electrochemical water splitting have been widely studied. In order to find efficient photocatalysts and electrocatalysts, materials with various composition, size, and surface/interface are investigated. In recent years, constructing suitable nanoscale hetero-interfaces can not only overcome the disadvantages of the single-phase material, but also possibly provide new functionalities. In this review, we systematically introduce the fundamental understanding and experimental progress in nanoscale hetero-interface engineering to design and fabricate photocatalytic and electrocatalytic materials for water splitting. The basic principles of photo-/electro-catalytic water splitting and the fundamentals of nanoscale hetero-interfaces are briefly introduced. The intrinsic behaviors of nanoscale hetero-interfaces on electrocatalysts and photocatalysts are summarized, which are the electronic structure modulation, space charge separation, charge/electron/mass transfer, support effect, defect effect, and synergistic effect. By highlighting the main characteristics of hetero-interfaces, the main roles of hetero-interfaces for electrocatalytic and photocatalytic water splitting are discussed, including excellent electronic structure, efficient charge separation, lower reaction energy barriers, faster charge/electron/mass transfer, more active sites, higher conductivity, and higher stability on hetero-interfaces. Following above analysis, the developments of electrocatalysts and photocatalysts with hetero-structures are systematically reviewed.
Collapse
Affiliation(s)
- Baopeng Yang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
- School of Physics and Electronics, Central South University, Changsha, Hunan, P. R. China
| | - Dingzhong Luo
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Shimiao Wu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Chen D, Lu R, Yu R, Dai Y, Zhao H, Wu D, Wang P, Zhu J, Pu Z, Chen L, Yu J, Mu S. Work-function-induced Interfacial Built-in Electric Fields in Os-OsSe 2 Heterostructures for Active Acidic and Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202208642. [PMID: 35822462 DOI: 10.1002/anie.202208642] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/16/2022]
Abstract
Theoretical calculations unveil that the formation of Os-OsSe2 heterostructures with neutralized work function (WF) perfectly balances the electronic state between strong (Os) and weak (OsSe2 ) adsorbents and bidirectionally optimizes the hydrogen evolution reaction (HER) activity of Os sites, significantly reducing thermodynamic energy barrier and accelerating kinetics process. Then, heterostructural Os-OsSe2 is constructed for the first time by a molten salt method and confirmed by in-depth structural characterization. Impressively, due to highly active sites endowed by the charge balance effect, Os-OsSe2 exhibits ultra-low overpotentials for HER in both acidic (26 mV @ 10 mA cm-2 ) and alkaline (23 mV @ 10 mA cm-2 ) media, surpassing commercial Pt catalysts. Moreover, the solar-to-hydrogen device assembled with Os-OsSe2 further highlights its potential application prospects. Profoundly, this special heterostructure provides a new model for rational selection of heterocomponents.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruohan Yu
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuhang Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Dulan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
10
|
Chen C, Fu Z, Qi F, Chen Y, Meng G, Chang Z, Kong F, Zhu L, Tian H, Huang H, Cui X, Shi J. Fe
2+
/Fe
3+
Cycling for Coupling Self‐Powered Hydrogen Evolution and Preparation of Electrode Catalysts. Angew Chem Int Ed Engl 2022; 61:e202207226. [DOI: 10.1002/anie.202207226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Zhengqian Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing Beijing 100083 P.R. China
| | - Ge Meng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Ziwei Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fantao Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Libo Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Han Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Haitao Huang
- Department of Applied Physics Hong Kong Polytechnic University 11 Yucai Road Kowloon, Hongkong China
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
11
|
Chen D, Lu R, Yu R, Dai Y, Zhao H, Wu D, Wang P, Zhu J, Pu Z, Chen L, Yu J, Mu S. Work‐function‐induced Interfacial Built‐in Electric Fields in Os‐OsSe2 Heterostructures for Active Acidic and Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ding Chen
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Ruihu Lu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Ruohan Yu
- Wuhan University of Technology NRC CHINA
| | - Yuhang Dai
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Hongyu Zhao
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Dulan Wu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Pengyan Wang
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Jiawei Zhu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Zonghua Pu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Lei Chen
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Jun Yu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Shichun Mu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processi 122 Luoshi Road, State Lab, Wuhan Univsersity of Technology 430070 Wuhan CHINA
| |
Collapse
|
12
|
Chen C, Fu Z, Qi F, Chen Y, Meng G, Chang Z, Kong F, Zhu L, Tian H, Huang H, Cui X, Shi J. Fe
2+
/Fe
3+
Cycling for Coupling Self‐Powered Hydrogen Evolution and Preparation of Electrode Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Zhengqian Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yafeng Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing Beijing 100083 P.R. China
| | - Ge Meng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Ziwei Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Fantao Kong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Libo Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Han Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
| | - Haitao Huang
- Department of Applied Physics Hong Kong Polytechnic University 11 Yucai Road Kowloon, Hongkong China
| | - Xiangzhi Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 P.R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P.R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
13
|
Boro B, Adak MK, Biswas S, Sarkar C, Nailwal Y, Shrotri A, Chakraborty B, Wong BM, Mondal J. Electrocatalytic water oxidation performance in an extended porous organic framework with a covalent alliance of distinct Ru sites. NANOSCALE 2022; 14:7621-7633. [PMID: 35545095 DOI: 10.1039/d2nr01297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rational synthesis of durable, earth-abundant efficient electrocatalysts for the oxygen evolution reaction (OER) from water is one of the most important routes for storing renewable energy and minimizing fossil fuel combustion. The prime hurdles for effectively utilizing commercial RuO2 as (OER) electrocatalysts are its very low stability, catalyst deactivation, and high cost. In this work, we explored a Ru-integrated porous organic polymer (Ru@Bpy-POP) by a facile one-pot Friedel-Crafts alkylation strategy between redox-active (Ru(demob)3Cl2) and a carbazole unit, which is composed of unique features including an extended framework unit, isolated active sites, and tunable electrode kinetics. Ru@Bpy-POP can serve as a bridge between a Metal-Organic Framework (MOF) and POP-based catalytic systems with a balanced combination of covalent bonds (structural stability) and open metal sites (single site catalysis). Ru@Bpy-POP, deposited on a three-dimensional nickel foam electrode support, exhibits a promising electrocatalytic OER activity with an ultra-low ruthenium loading compared to a benchmark RuO2 catalyst, providing an overpotential of about 270 mV to reach 10 mA cm-2 in an alkaline medium. Moreover, a high current density of 248 mA cm-2 was achieved for the Ru@Bpy-POP catalyst at only 1.6 V (vs. RHE), which is much higher than 91 mA cm-2 for commercial RuO2. The robust, albeit highly conjugated, POP framework not only triggered facile electro-kinetics but also suppressed aggregation and metallic corrosion during electrolysis. In particular, the benefits of covalent integration of distinct Ru sites into the framework can modulate intermediate adsorption and charge density, which contributes to its exceptional OER activity. All of the critical steps involved in OER are complemented by Density Functional Theory (DFT) calculations, which suggest that electrocatalytic water oxidation proceeds from a closed-shell configuration to open-shell electronic configurations with high-spin states. These open-shell configurations are more stable than their closed-shell counterparts by 1 eV, improving the overall catalytic activity.
Collapse
Affiliation(s)
- Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mrinal K Adak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Sohag Biswas
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California 92521, USA.
| | - Chitra Sarkar
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogendra Nailwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli, 140306, India
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California 92521, USA.
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
14
|
Deng K, Zhou T, Mao Q, Wang S, Wang Z, Xu Y, Li X, Wang H, Wang L. Surface Engineering of Defective and Porous Ir Metallene with Polyallylamine for Hydrogen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110680. [PMID: 35263473 DOI: 10.1002/adma.202110680] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The design of defects and porous structures into metallene with functional surfaces is highly desired to improve its permeability, surface area, and active sites, but remains a great challenge. In this work, polyallylamine-encapsulated Ir metallene with defects and porous structure (Ir@PAH metallene) is easily fabricated by a one-step wet chemical reduction method. The Ir@PAH metallene exhibits excellent hydrogen evolution reaction (HER) performance with an overpotential of only 14 mV at 10 mA cm-2 , a low Tafel slope of 31.2 mV dec-1 , and almost no activity decay after stability test. The abundant defects and pores as well as several-atomic-layer nanosheet structures of Ir@PAH metallene provide a large specific surface area, high conductivity, and efficient mass transport/diffusion. In addition, surface-functionalized PAH molecules can modulate the electronic structure through strong Ir-N interaction and act as proton carriers to capture hydrogen ions, which is very beneficial for the HER in acidic media. This work provides a useful strategy for the synthesis of the defective and porous metallene with functionalized surfaces for various catalytic applications.
Collapse
Affiliation(s)
- Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
15
|
Li Y, Wang W, Cheng M, Qian Q, Zhu Y, Zhang G. Environmentally benign general synthesis of nonconsecutive carbon-coated RuP 2 porous microsheets as efficient bifunctional electrocatalysts under neutral conditions for energy-saving H 2 production in hybrid water electrolysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00055e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nonconsecutive carbon-coated RuP2 porous microsheet (RuP2@InC-MS) with bifunctionality for HzOR and HER is realized. DFT calculations evidence that C is more thermoneutral for HER while Ru boosts the dehydrogenation kinetics during HzOR process.
Collapse
Affiliation(s)
- Yapeng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Mingyu Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qizhu Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yin Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Genqiang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Ma F, Wang S, Han L, Guo Y, Wang Z, Wang P, Liu Y, Cheng H, Dai Y, Zheng Z, Huang B. Targeted Regulation of the Electronic States of Nickel Toward the Efficient Electrosynthesis of Benzonitrile and Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56140-56150. [PMID: 34792329 DOI: 10.1021/acsami.1c16048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly efficient electro-oxidation of benzylamine to generate value-added chemicals coupled with the hydrogen evolution reaction (HER) is crucial but challenging. Herein, targeted regulation of the electronic states of Ni sites was realized via simple yet precise nitridation engineering. Benefiting from the insertion of N atoms into the Ni lattice, the Ni3N electrode exhibits superior activity, selectivity, and stability for the benzylamine oxidation reaction (BOR). Especially, under the industrially relevant current (∼250 mA), the Ni3N catalyst remains ∼95% selective for benzonitrile production, reaching 1.43 mmol h-1 cm-2. Experimental and theoretical findings reveal that the formation of Ni-N bonds upshifts the Ni d-band center and optimizes the electrophilic properties of Ni sites, which contributes to the adsorption and dehydrogenations process of benzylamine. Furthermore, due to the work function difference between Ni and Ni3N, a strong mutual interaction occurs at the heterogeneous interface for Ni-Ni3N, which endows it with the appropriate H* adsorption energy and thus excellent HER performance. Impressively, the integrated solar-energy-driven BOR coupled with the HER electrolyzer affords 10 mA cm-2 at an ultralow voltage of 1.4 V and exhibits a promising practical application (ηsolar-to-hydrogen = 13.8%). This work offers a new perspective for the bifunctional design of nitrides in the field of electrosynthesis.
Collapse
Affiliation(s)
- Fahao Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Shuhua Wang
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Liuyuan Han
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Yuhao Guo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
17
|
Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W. PtSe
2
/Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110335] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zongpeng Wang
- School of Advanced study Taizhou University Taizhou China
| | - Beibei Xiao
- School of Energy and Power Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Zhiping Lin
- School of Advanced study Taizhou University Taizhou China
| | - Yaping Xu
- School of Advanced study Taizhou University Taizhou China
| | - Yan Lin
- School of Advanced study Taizhou University Taizhou China
| | - Fanqi Meng
- Institution of Physics Chinese Academic of Science Beijing China
| | - Qinghua Zhang
- Institution of Physics Chinese Academic of Science Beijing China
| | - Lin Gu
- Institution of Physics Chinese Academic of Science Beijing China
| | - Baizeng Fang
- Department of Chemical & Biological Engineering University of British Columbia 2360 East Mall Vancouver BC V6T 1Z3 Canada
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing China
| | - Wenwu Zhong
- School of Advanced study Taizhou University Taizhou China
| |
Collapse
|
18
|
Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W. PtSe 2 /Pt Heterointerface with Reduced Coordination for Boosted Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:23388-23393. [PMID: 34370386 DOI: 10.1002/anie.202110335] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/23/2022]
Abstract
PtSe2 is a typical noble metal dichalcogenide (NMD) that holds promising possibility for next-generation electronics and photonics. However, when applied in hydrogen evolution reaction (HER), it exhibits sluggish kinetics due to the insufficient capability of absorbing active species. Here, we construct PtSe2 /Pt heterointerface to boost the reaction dynamics of PtSe2 , enabled by an in situ electrochemical method. It is found that Se vacancies are induced around the heterointerface, reducing the coordination environment. Correspondingly, the exposed Pt atoms at the very vicinity of Se vacancies are activated, with enhanced overlap with H 1s orbital. The adsorption of H. intermediate is thus strengthened, achieving near thermoneutral free energy change. Consequently, the as-prepared PtSe2 /Pt exhibits extraordinary HER activity even superior to Pt/C, with an overpotential of 42 mV at 10 mA cm-2 and a Tafel slope of 53 mV dec-1 . This work raises attention on NMDs toward HER and provides insights for the rational construction of novel heterointerfaces.
Collapse
Affiliation(s)
- Zongpeng Wang
- School of Advanced study, Taizhou University, Taizhou, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhiping Lin
- School of Advanced study, Taizhou University, Taizhou, China
| | - Yaping Xu
- School of Advanced study, Taizhou University, Taizhou, China
| | - Yan Lin
- School of Advanced study, Taizhou University, Taizhou, China
| | - Fanqi Meng
- Institution of Physics, Chinese Academic of Science, Beijing, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, Beijing, China
| | - Lin Gu
- Institution of Physics, Chinese Academic of Science, Beijing, China
| | - Baizeng Fang
- Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Wenwu Zhong
- School of Advanced study, Taizhou University, Taizhou, China
| |
Collapse
|
19
|
Wang Y, Wang C, Shang H, Yuan M, Wu Z, Li J, Du Y. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J Colloid Interface Sci 2021; 605:779-789. [PMID: 34371423 DOI: 10.1016/j.jcis.2021.07.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
Urea electro-oxidation reaction (UOR) has been a promising strategy to replace oxygen evolution reaction (OER) by urea-mediated water splitting for hydrogen production. Naturally, rational design of high-efficiency and multifunctional electrocatalyst towards UOR and hydrogen evolution reaction (HER) is of vital significance, but still a grand challenge. Herein, an innovative 3D Ru-modified NiFe metal-organic framework (MOF) nanoflake array on Ni foam (Ru-NiFe-x/NF) was elaborately designed via spontaneous galvanic replacement reaction (GRR). Notably, the adsorption capability of intermediate species (H*) of catalyst is significantly optimized by Ru modification. Meanwhile, rich high-valence Ni active species can be acquired by self-driven electronic reconstruction in the interface, then dramatically accelerating the electrolysis of water and urea. Remarkably, the optimized Ru-NiFe-③/NF (1.6 at% of Ru) only requires the overpotential of 90 and 310 mV to attain 100 mA cm-2 toward HER and OER in alkaline electrolyte, respectively. Impressively, an ultralow voltage of 1.47 V is required for Ru-NiFe-③/NF to deliver a current density of 100 mA cm-2 in urea-assisted electrolysis cell with superior stability, which is 190 mV lower than that of Pt/C-NF||RuO2/NF couple. This work is desired to explore a facile way to exploit environmentally-friendly energy by coupling hydrogen evolution with urea-rich sewage disposal.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|