1
|
Su J, Zhao K, Ren Y, Zhao L, Wei B, Liu B, Zhang Y, Wang F, Li J, Liu Y, Liu K, Zhang H. Biosynthetic Structural Proteins with Super Plasticity, Extraordinary Mechanical Performance, Biodegradability, Biocompatibility and Information Storage Ability. Angew Chem Int Ed Engl 2022; 61:e202117538. [PMID: 35072331 DOI: 10.1002/anie.202117538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/09/2023]
Abstract
Degradable bioplastics have attracted growing interest worldwide. However, it is challenging to develop bioplastics with a simple processing procedure, strong mechanical performance, good biocompatibility, and adjustable physicochemical properties. Herein, we introduced structural proteins as building blocks and developed a simple environmentally friendly approach to fabricate diverse protein-based plastics. A cost-effective and high-level production approach was developed through batch fermentation of Escherichia coli to produce the biomaterials. These bioplastics possess super plasticity, biocompatibility, biodegradability, and high resistance to organic solvents. Their structural and mechanical properties can be precisely controlled. Besides, high density information storage and hemostatic applications were realized in the bioplastic system. The customizable bioplastics have great potential for applications in numerous fields and are capable to scale up to the industrial level.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Bin Liu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Su J, Zhao K, Ren Y, Zhao L, Wei B, Liu B, Zhang Y, Wang F, Li J, Liu Y, Liu K, Zhang H. Biosynthetic structural proteins with super plasticity, extraordinary mechanical performance, biodegradability, biocompatibility and information storage ability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juanjuan Su
- Chinese Academy of Sciences College of Materials Science and Opto-Electronic Technology CHINA
| | - Kelu Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yubin Ren
- Qinghua University: Tsinghua University Department of Chemistry CHINA
| | - Lai Zhao
- China-Japan Union Hospital of Jilin University Department of urology CHINA
| | - Bo Wei
- The First Medical Center of PLA General Hospital Department of General Surgery CHINA
| | - Bin Liu
- China-Japan Union Hospital of Jilin University Department of Urology CHINA
| | - Yi Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Fan Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jingjing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yawei Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization No. 5625 Renmin Rd. 130022 Changchun CHINA
| | - Kai Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Hongjie Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| |
Collapse
|
3
|
Sun J, Xiao L, Li B, Zhao K, Wang Z, Zhou Y, Ma C, Li J, Zhang H, Herrmann A, Liu K. Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021; 60:23687-23694. [PMID: 33886148 PMCID: PMC8596419 DOI: 10.1002/anie.202100064] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Adhesive hydrogels have been developed for wound healing applications. However, their adhesive performance is impaired dramatically due to their high swelling on wet tissues. To tackle this challenge, we fabricated a new type of non-swelling protein adhesive for underwater and in vivo applications. In this soft material, the electrostatic complexation between supercharged polypeptides with oppositely charged surfactants containing 3,4-dihydroxylphenylalanine or azobenzene moieties plays an important role for the formation of ultra-strong adhesive coacervates. Remarkably, the adhesion capability is superior to commercial cyanoacrylate when tested in ambient conditions. Moreover, the adhesion is stronger than other reported protein-based adhesives in underwater environment. The ex vivo and in vivo experiments demonstrate the persistent adhesive performance and outstanding behaviors for wound sealing and healing.
Collapse
Affiliation(s)
- Jing Sun
- Department of ChemistryTsinghua UniversityBeijing100084China
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Chao Ma
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Kai Liu
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
4
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|