1
|
Yang F, Yue B, Zhu L. Light-triggered Modulation of Supramolecular Chirality. Chemistry 2023; 29:e202203794. [PMID: 36653305 DOI: 10.1002/chem.202203794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.
Collapse
Affiliation(s)
- Fan Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Xue Y, Jiang S, Zhong H, Chen Z, Wang F. Photo‐Induced Polymer Cyclization via Supramolecular Confinement of Cyanostilbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuncong Xue
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Sixun Jiang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering Hefei National Laboratory for Physical Science at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
3
|
Xue Y, Jiang S, Zhong H, Chen Z, Wang F. Photo-Induced Polymer Cyclization via Supramolecular Confinement of Cyanostilbenes. Angew Chem Int Ed Engl 2021; 61:e202110766. [PMID: 34714571 DOI: 10.1002/anie.202110766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Efficient synthesis of cyclic polymers has received much attention in polymer chemistry field. Although photochemical cycloaddition of terminal π-bonded units provides a plausible way toward cyclic polymerization, it remains challenging to avoid side reactions by manipulating the reaction selectivity. Herein supramolecular confinement has been developed as a promising strategy to address this issue, by introducing highly directional hydrogen bonds to the photo-reactive cyanostilbenes. The cyanostilbenes units on both ends of a telechelic macromonomer are orientationally aligned with high local concentrations, yielding [2+2] photo-cycloaddition products upon 430 nm light irradiation. It leads to the formation of cyclic polymers in the self-assembled state, in stark contrast to Z-E isomerization of cyanostilbenes in the monomeric state. Overall, supramolecular confinement effect exemplified in the current study provides new avenues toward cyclic topological polymers with high synthetic efficiency.
Collapse
Affiliation(s)
- Yuncong Xue
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Sixun Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Zhong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021; 60:19997-20002. [PMID: 34189820 DOI: 10.1002/anie.202107903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 01/07/2023]
Abstract
Chemoresponsive supramolecular systems with infinite switching capability are important for applications in recycled materials and intelligent devices. To attain this objective, here a chemoresponsive polypseudorotaxane is reported on the basis of a bis(p-phenylene)-34-crown-10 macrocycle (H) and a cyano-substituted viologen guest (G). H and G form a [2]pseudorotaxane (H⊃G) both in solution and in the solid state. Upon addition of AgSF6 , a polypseudorotaxane (denoted as [H⋅G⋅Ag]n ) forms as synergistically driven by host-guest complexation and metal-coordination interactions. [H⋅G⋅Ag]n depolymerizes into a [3]pseudorotaxane (denoted as H2 ⋅G⋅Ag2 ⋅acetone2 ) upon addition of H and AgSF6 , while it reforms with successive addition of G. The transformations between [H⋅G⋅Ag]n and H2 ⋅G⋅Ag2 ⋅acetone2 can be switched for infinite cycles, superior to the conventional chemoresponsive supramolecular polymeric systems with limited switching capability.
Collapse
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|