1
|
Xie Y, Sun G, Mandl GA, Maurizio SL, Chen J, Capobianco JA, Sun L. Upconversion Luminescence through Cooperative and Energy-Transfer Mechanisms in Yb 3+ -Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216269. [PMID: 36437239 DOI: 10.1002/anie.202216269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980 nm irradiation. In contrast, only the 497 nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, 200444, Shanghai, China
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Jiabo Chen
- Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Lining Sun
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
2
|
Xu M, Cai P, Meng SS, Yang Y, Zheng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal-Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022; 61:e202207786. [PMID: 35723492 DOI: 10.1002/anie.202207786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing-Hua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Xu M, Cai P, Meng SS, Yang Y, Zeng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal‐Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Xu
- Nanjing Normal University chemistry CHINA
| | - Peiyu Cai
- Texas A&M University chemistry UNITED STATES
| | | | - Yihao Yang
- Texas A&M University chemistry UNITED STATES
| | | | | | - Lin Gu
- Chinese Academy of Sciences physics CHINA
| | - Hong-Cai Zhou
- Texas A&M University College Station: Texas A&M University Department of Chemistry Corner of Ross and Spence StreetsP O Box 30012 77842-3012 College Station UNITED STATES
| | | |
Collapse
|
4
|
Wang X, Zhang H, Qi C, Zhou F, Ni L, Chen S, Qi J, Wang C, Zheng T, Li J. Hydrangea-like architectures composed of Zr-based metal-organic framework nanosheets with enhanced iodine capture. Dalton Trans 2021; 50:16468-16472. [PMID: 34730154 DOI: 10.1039/d1dt02748d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zirconium-based metal-organic framework nanosheet assembled hydrangea-like architectures were reported and an enhanced iodine capture capacity was achieved.
Collapse
Affiliation(s)
- Xiangxiang Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chao Qi
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fan Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Linhan Ni
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Saisai Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Junwen Qi
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chaohai Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Tao Zheng
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, China.
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|