Mendel M, Gnägi L, Dabranskaya U, Schoenebeck F. Rapid and Modular Access to Vinyl Cyclopropanes Enabled by Air-stable Palladium(I) Dimer Catalysis.
Angew Chem Int Ed Engl 2023;
62:e202211167. [PMID:
36226918 PMCID:
PMC10107780 DOI:
10.1002/anie.202211167]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022]
Abstract
While vinyl cyclopropanes are valuable functional groups in drugs or natural products as well as established precursors to trigger a rich variety of synthetic transformations, their reactive nature can make their installation via direct catalytic approaches challenging. We herein present a modular access to (di)vinyl cyclopropanes under very mild conditions and full conservation of stereochemistry, allowing access to the cis or trans cyclopropane- as well as E or Z vinyl-stereochemical relationships. Our protocol relies on air-stable dinuclear PdI catalysis, which enables rapid (<30 min) and selective access to a diverse range of vinyl cyclopropane motifs at room temperature, even on gram scale.
Collapse