1
|
Qin Y, Lu J, Zhang C, Xu L, Wong WY. Auxiliary Ligand-Coordinated Nanoconfined Hydrophobic Microenvironments in Nickel(II)-Acetylide Framework for Enhanced CO 2 Photoreduction. Angew Chem Int Ed Engl 2025; 64:e202505883. [PMID: 40100324 DOI: 10.1002/anie.202505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Metal-acetylide frameworks (MAFs), featuring metal-bis(acetylide) linkages (─C≡C─M─C≡C─), are emerging as a new class of 2D nanomaterials with promise in catalysis. Here, we report a new 2D NiII-acetylide framework, TPA-Ni(PR3)2-GYs, that incorporates the NiII(PR3)2 moiety [R = CH3 (Me), CH2CH3 (Et), and CH2CH2CH2CH3 (Bu)] into tris(4-ethynylphenyl)amine-based graphdiyne framework (TPA-GDY). As a result, TPA-Ni(PBu3)2-GY exhibits an exceptional photocatalytic CO2 reduction activity of 3807 µmol g-1 h-1 and a high selectivity of 99.4% for CO production upon visible light irradiation. Mechanistic investigations reveal a strong orbital matching effect between the d orbitals of NiII and the p orbitals of the alkynyl C atoms in organic ligands, which not only accelerates the transfer and separation of photogenerated charge carriers but also reduces the reaction potential barrier for the formation of *COOH intermediates. Furthermore, the high hydrophobicity of the auxiliary coordinated ligands (trialkylphosphines) to Ni center, particularly tributylphosphine, creates a nanoconfined space that enhances both the accessibility of CO2 and the utilization of NiII catalytic active sites while inhibiting hydrogen evolution. This study highlights the benefit of modulating the microenvironment around the coordinated metal center to enhance the performance of catalysts with direct metal-acetylide bonding.
Collapse
Affiliation(s)
- Yingying Qin
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. China
| | - Jian Lu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. China
| | - Chen Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. China
| |
Collapse
|
2
|
Cai J, Zhao J, Gao X, Ma W, Meng D, Zhang H, Hao C, Sun M, Kuang H, Xu C, Xu L. Magnetic Field Tuning Ionic Current Generated by Chiromagnetic Nanofilms. ACS NANO 2022; 16:11066-11075. [PMID: 35776106 DOI: 10.1021/acsnano.2c03778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The realization of chiral magnetic effect by macroscopically manipulating quantum states of chiral matter under the magnetic field makes a future for information transmission, memory storage, magnetic cooling materials etc., while the microscopic tiny signal differences of at the interface electrons are laborious to be discerned. Here, chiromagnetic iron oxide (Fe3O4) nanofilms were successfully prepared by modulating the magnetic and electrical transition dipoles and combined with confined ion transport, enabling magnetic field-tunable ionic currents with markedly ∼7.91-fold higher for l-tartaric acid (TA)-modified Fe3O4 nanofilms than that by d-TA. The apparent amplification results from the charge redistribution at the ferromagnetic-organic interface under the influence of the chiral magnetic effect, resulting in a significant potential difference across the nanofilms that drive ion transport in the confined environment. This strategy, on the one hand, makes it possible to efficiently characterize the electronic microimbalance state in chiral substances induced by the magnetic field and, on the other hand realizes the discrimination and highly sensitive quantitative detection of chiral drug enantiomers, which give insights for the in-depth understanding of chiral magnetic effects and efficient enantiomeric recognition.
Collapse
Affiliation(s)
- Jiarong Cai
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang 325001, P. R. China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
3
|
Lu SM, Li MY, Long YT. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:4653-4659. [PMID: 35604854 DOI: 10.1021/acs.jpclett.2c00960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-entity electrochemistry (SEE) provides powerful means to measure single cells, single particles, and even single molecules at the nanoscale by diverse well-defined interfaces. The nanoconfined electrode interface has significantly enhanced structural, electrical, and compositional characteristics that have great effects on the assay limitation and selectivity of single-entity measurement. In this Perspective, after introducing the dynamic chemistry interactions of the target and electrode interface, we present a fundamental understanding of how these dynamic interactions control the features of the electrode interface and thus the stochastic and discrete electrochemical responses of single entities under nanoconfinement. Both stochastic single-entity collision electrochemistry and nanopore electrochemistry as examples in this Perspective explore how these interactions alter the transient charge transfer and mass transport. Finally, we discuss the further challenges and opportunities in SEE, from the design of sensing interfaces to hybrid spectro-electrochemical methods, theoretical models, and advanced data processing.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|