1
|
Tang J, Feng M, Wang D, Zhang L, Yang K. Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound. Genes Dis 2024; 11:101112. [PMID: 38947740 PMCID: PMC11214298 DOI: 10.1016/j.gendis.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/02/2024] Open
Abstract
Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique's potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
Collapse
Affiliation(s)
- Jin Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxuan Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
2
|
Lane BJ, Pliotas C. Approaches for the modulation of mechanosensitive MscL channel pores. Front Chem 2023; 11:1162412. [PMID: 37021145 PMCID: PMC10069478 DOI: 10.3389/fchem.2023.1162412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
MscL was the first mechanosensitive ion channel identified in bacteria. The channel opens its large pore when the turgor pressure of the cytoplasm increases close to the lytic limit of the cellular membrane. Despite their ubiquity across organisms, their importance in biological processes, and the likelihood that they are one of the oldest mechanisms of sensory activation in cells, the exact molecular mechanism by which these channels sense changes in lateral tension is not fully understood. Modulation of the channel has been key to understanding important aspects of the structure and function of MscL, but a lack of molecular triggers of these channels hindered early developments in the field. Initial attempts to activate mechanosensitive channels and stabilize functionally relevant expanded or open states relied on mutations and associated post-translational modifications that were often cysteine reactive. These sulfhydryl reagents positioned at key residues have allowed the engineering of MscL channels for biotechnological purposes. Other studies have modulated MscL by altering membrane properties, such as lipid composition and physical properties. More recently, a variety of structurally distinct agonists have been shown bind to MscL directly, close to a transmembrane pocket that has been shown to have an important role in channel mechanical gating. These agonists have the potential to be developed further into antimicrobial therapies that target MscL, by considering the structural landscape and properties of these pockets.
Collapse
Affiliation(s)
- Benjamin J. Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Immadisetty K, Polasa A, Shelton R, Moradi M. Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel. Comput Struct Biotechnol J 2022; 20:2539-2550. [PMID: 35685356 PMCID: PMC9156883 DOI: 10.1016/j.csbj.2022.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Reid Shelton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
4
|
Li CY, Rehm FBH, Yap K, Zdenek CN, Harding MD, Fry BG, Durek T, Craik DJ, de Veer SJ. Cystine Knot Peptides with Tuneable Activity and Mechanism. Angew Chem Int Ed Engl 2022; 61:e202200951. [PMID: 35224831 PMCID: PMC9539897 DOI: 10.1002/anie.202200951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Knottins are topologically complex peptides that are stabilised by a cystine knot and have exceptionally diverse functions, including protease inhibition. However, approaches for tuning their activity in situ are limited. Here, we demonstrate separate approaches for tuning the activity of knottin protease inhibitors using light or streptavidin. We show that the inhibitory activity and selectivity of an engineered knottin can be controlled with light by activating a second mode of action that switches the inhibitor ON against new targets. Guided by a knottin library screen, we also identify a position in the inhibitor's binding loop that permits insertion of a biotin tag without impairing activity. Using streptavidin, biotinylated knottins with nanomolar affinity can be switched OFF in activity assays, and the anticoagulant activity of a factor XIIa inhibitor can be rapidly switched OFF in human plasma. Our findings expand the scope of engineered knottins for precisely controlling protein function.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maxim D Harding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Li CY, Rehm FBH, Yap K, Zdenek CN, Harding MD, Fry BG, Durek T, Craik DJ, Veer SJ. Cystine Knot Peptides with Tuneable Activity and Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| | - Fabian B. H. Rehm
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| | - Kuok Yap
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| | - Christina N. Zdenek
- Venom Evolution Lab School of Biological Sciences The University of Queensland Brisbane QLD 4072 Australia
| | - Maxim D. Harding
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| | - Bryan G. Fry
- Venom Evolution Lab School of Biological Sciences The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Durek
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| | - Simon J. Veer
- Institute for Molecular Bioscience Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
6
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol Mol Biol Rev 2020; 84:84/1/e00055-19. [PMID: 31941768 DOI: 10.1128/mmbr.00055-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
General principles in biology have often been elucidated from the study of bacteria. This is true for the bacterial mechanosensitive channel of large conductance, MscL, the channel highlighted in this review. This channel functions as a last-ditch emergency release valve discharging cytoplasmic solutes upon decreases in osmotic environment. Opening the largest gated pore, MscL passes molecules up to 30 Å in diameter; exaggerated conformational changes yield advantages for study, including in vivo assays. MscL contains structural/functional themes that recur in higher organisms and help elucidate how other, structurally more complex, channels function. These features of MscL include (i) the ability to directly sense, and respond to, biophysical changes in the membrane, (ii) an α helix ("slide helix") or series of charges ("knot in a rope") at the cytoplasmic membrane boundary to guide transmembrane movements, and (iii) important subunit interfaces that, when disrupted, appear to cause the channel to gate inappropriately. MscL may also have medical applications: the modality of the MscL channel can be changed, suggesting its use as a triggered nanovalve in nanodevices, including those for drug targeting. In addition, recent studies have shown that the antibiotic streptomycin opens MscL and uses it as one of the primary paths to the cytoplasm. Moreover, the recent identification and study of novel specific agonist compounds demonstrate that the channel is a valid drug target. Such compounds may serve as novel-acting antibiotics and adjuvants, a way of permeabilizing the bacterial cell membrane and, thus, increasing the potency of commonly used antibiotics.
Collapse
|
9
|
Allosteric activation of an ion channel triggered by modification of mechanosensitive nano-pockets. Nat Commun 2019; 10:4619. [PMID: 31601809 PMCID: PMC6787021 DOI: 10.1038/s41467-019-12591-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2019] [Indexed: 11/08/2022] Open
Abstract
Lipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel. We restrict lipid-chain access to the nano-pockets by mutagenesis and sulfhydryl modification, and monitor channel conformation by PELDOR/DEER spectroscopy. For a single site located at the entrance of the nano-pockets and distal to the channel pore we generate an allosteric response in the absence of tension. Single-channel recordings reveal a significant decrease in the pressure activation threshold of the modified channel and a sub-conducting state in the absence of applied tension. Threshold is restored to wild-type levels upon reduction of the sulfhydryl modification. The modification associated with the conformational change restricts lipid access to the nano-pocket, interrupting the contact between the membrane and the channel that mediates mechanosensitivity.
Collapse
|
10
|
Mutter NL, Volarić J, Szymanski W, Feringa BL, Maglia G. Reversible Photocontrolled Nanopore Assembly. J Am Chem Soc 2019; 141:14356-14363. [PMID: 31469268 PMCID: PMC6743218 DOI: 10.1021/jacs.9b06998] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Self-assembly
is a fundamental feature of biological systems, and
control of such processes offers fascinating opportunities to regulate
function. Fragaceatoxin C (FraC) is a toxin that upon binding to the
surface of sphingomyelin-rich cells undergoes a structural metamorphosis,
leading to the assembly of nanopores at the cell membrane and causing
cell death. In this study we attached photoswitchable azobenzene pendants
to various locations near the sphingomyelin binding pocket of FraC
with the aim of remote controlling the nanopore assembly using light.
We found several constructs in which the affinity of the toxin for
biological membranes could be activated or deactivated by irradiation,
thus enabling reversible photocontrol of pore formation. Notably,
one construct was completely inactive in the thermally adapted state;
it however induced full lysis of cultured cancer cells upon light
irradiation. Selective irradiation also allowed isolation of individual
nanopores in artificial lipid membranes. Photocontrolled FraC might
find applications in photopharmacology for cancer therapeutics and
has potential to be used for the fabrication of nanopore arrays in
nanopore sensing devices, where the reconstitution, with high spatiotemporal
precision, of single nanopores must be controlled.
Collapse
Affiliation(s)
| | | | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology , University of Groningen , Hanzeplein 1 , 9713 GZ , Groningen , The Netherlands
| | | | | |
Collapse
|
11
|
Khafaji M, Zamani M, Golizadeh M, Bavi O. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 2019; 11:335-352. [PMID: 31102198 PMCID: PMC6557961 DOI: 10.1007/s12551-019-00532-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard, inorganic nanostructures have been of special interest for CT-PTT, owing to their high thermal conversion efficiency, application in bio-imaging, versatility, and ease of synthesis and surface modification. In addition to being used as the first type of CT-PTT agents, they also include the most novel CT-PTT systems as the potentials of new inorganic nanomaterials are being more and more discovered. Considering the variety of inorganic nanostructures introduced for CT-PTT applications, enormous effort is needed to perform translational research on the most promising nanomaterials and to comprehensively evaluate the potentials of newly introduced ones in preclinical studies. This review provides an overview of most novel strategies used to employ inorganic nanostructures for cancer CT-PTT as well as cancer imaging and discusses current challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Mona Khafaji
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Mortaza Golizadeh
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
12
|
Ye J, Tang S, Meng L, Li X, Wen X, Chen S, Niu L, Li X, Qiu W, Hu H, Jiang M, Shang S, Shu Q, Zheng H, Duan S, Li Y. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. NANO LETTERS 2018; 18:4148-4155. [PMID: 29916253 DOI: 10.1021/acs.nanolett.8b00935] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Externally controlling the excitation of a neuronal subset through ion channels activation can modulate the firing pattern of an entire neural circuit in vivo. As nanovalves in the cell membrane, ion channels can be opened by light (optogenetics) or ultrasonic (sonogenetics) means. A thoroughly analyzed force sensor is the Escherichia coli mechano sensitive channel of large conductance (MscL). Here we expressed MscL in rat hippocampal neurons in a primary culture and showed that it could be activated by low-pressure ultrasound pulses. The gain-of-function mutation, I92L, sensitized MscL's sonic response, triggering action potentials at a peak negative pressure as low as 0.25 MPa. Further, the I92L MscL reliably elicited individual spikes by timed brief pulses, making excitation programmable. Because MscL opens to tension in the lipid bilayer, requiring no other proteins or ligands, it could be developed into a general noninvasive sonogenetic tool to manipulate the activities of neurons or other cells and potential nanodevices.
Collapse
Affiliation(s)
- Jia Ye
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Siyang Tang
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518005 , China
| | - Xia Li
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Xiaoxu Wen
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Sihan Chen
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518005 , China
| | - Xiangyao Li
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518005 , China
| | - Hailan Hu
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Mizu Jiang
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Shiqiang Shang
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Qiang Shu
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518005 , China
| | - Shumin Duan
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| | - Yuezhou Li
- Children's Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
13
|
Yang LM, Zheng H, Ratnakar JS, Adebesin BY, Do QN, Kovacs Z, Blount P. Engineering a pH-Sensitive Liposomal MRI Agent by Modification of a Bacterial Channel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704256. [PMID: 29638039 PMCID: PMC6140348 DOI: 10.1002/smll.201704256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
MscL is a bacterial mechanosensitive channel that serves as a cellular emergency release valve, protecting the cell from lysis upon a drop in external osmolarity. The channel has an extremely large pore (30 Å) and can be purified and reconstituted into artificial membranes. Moreover, MscL is modified to open in response to alternative external stimuli including changes in pH. These properties suggest this channel's potential as a triggered "nanopore" for localized release of vesicular contents such as magnetic resonance imaging (MRI) contrast agents and drugs. Toward this end, several variants of pH-triggered MscL nanovalves are engineered. Stealth vesicles previously been shown to evade normal in vivo clearance and passively accumulate in inflamed and malignant tissues are reconstituted. These vesicles are loaded with 1,4,7,10-tetraazacyclododecane tetraacetic acid gadolinium complex (Gd-DOTA), an MRI contrast reagent, and the resulting nanodevices tested for their ability to release Gd-DOTA as evidenced by enhancement of the longitudinal relaxation rate (R1 ) of the bulk water proton spins. Nanovalves that are responsive to physiological pH changes are identified, but differ in sensitivity and efficacy, thus giving an array of nanovalves that could potentially be useful in different settings. These triggered nanodevices may be useful in delivering both diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Hui Zheng
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - James S Ratnakar
- Advanced Imaging Research Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Bukola Y Adebesin
- Advanced Imaging Research Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Paul Blount
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
14
|
Abstract
Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.
Collapse
|
15
|
Feringa BL. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angew Chem Int Ed Engl 2017; 56:11060-11078. [PMID: 28851050 DOI: 10.1002/anie.201702979] [Citation(s) in RCA: 487] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/20/2022]
Abstract
A journey into the nano-world: The ability to design, use and control motor-like functions at the molecular level sets the stage for numerous dynamic molecular systems. In his Nobel Lecture, B. L. Feringa describes the evolution of the field of molecular motors and explains how to program and control molecules by incorporating responsive and adaptive properties.
Collapse
Affiliation(s)
- Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Feringa BL. Die Kunst, klein zu bauen: von molekularen Schaltern bis zu Motoren (Nobel-Aufsatz). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702979] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Groningen Niederlande
| |
Collapse
|
17
|
Calle D, Yilmaz D, Cerdan S, Kocer A. Drug delivery from engineered organisms and nanocarriers as monitored by multimodal imaging technologies. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.2.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Dimitrova A, Walko M, Hashemi Shabestari M, Kumar P, Huber M, Kocer A. In situ, Reversible Gating of a Mechanosensitive Ion Channel through Protein-Lipid Interactions. Front Physiol 2016; 7:409. [PMID: 27708587 PMCID: PMC5030285 DOI: 10.3389/fphys.2016.00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Understanding the functioning of ion channels, as well as utilizing their properties for biochemical applications requires control over channel activity. Herein we report a reversible control over the functioning of a mechanosensitive ion channel by interfering with its interaction with the lipid bilayer. The mechanosensitive channel of large conductance from Escherichia coli is reconstituted into liposomes and activated to its different sub-open states by titrating lysophosphatidylcholine (LPC) into the lipid bilayer. Activated channels are closed back by the removal of LPC out of the membrane by bovine serum albumin (BSA). Electron paramagnetic resonance spectra showed the LPC-dose-dependent gradual opening of the channel pore in the form of incrementally increasing spin label mobility and decreasing spin-spin interaction. A method to reversibly open and close mechanosensitive channels to distinct sub-open conformations during their journey from the closed to the fully open state enables detailed structural studies to follow the conformational changes during channel functioning. The ability of BSA to revert the action of LPC opens new perspectives for the functional studies of other membrane proteins that are known to be activated by LPC.
Collapse
Affiliation(s)
- Anna Dimitrova
- Department of Biochemistry, University of GroningenGroningen, Netherlands
| | - Martin Walko
- Department of Biochemistry, University of GroningenGroningen, Netherlands
| | | | - Pravin Kumar
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden UniversityLeiden, Netherlands
| | - Martina Huber
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden UniversityLeiden, Netherlands
| | - Armagan Kocer
- Neuroscience Department, University of Groningen, University Medical Center GroningenGroningen, Netherlands
| |
Collapse
|
19
|
Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol Adv 2016; 34:803-812. [PMID: 27143654 PMCID: PMC4947437 DOI: 10.1016/j.biotechadv.2016.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
20
|
Reading E, Walton TA, Liko I, Marty MT, Laganowsky A, Rees DC, Robinson CV. The Effect of Detergent, Temperature, and Lipid on the Oligomeric State of MscL Constructs: Insights from Mass Spectrometry. ACTA ACUST UNITED AC 2016; 22:593-603. [PMID: 26000747 DOI: 10.1016/j.chembiol.2015.04.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
The mechanosensitive channel of large conductance (MscL) acts as an emergency release valve for osmotic shock of bacteria preventing cell lysis. The large pore size, essential for function, requires the formation of oligomers with tetramers, pentamers, or hexamers observed depending on the species and experimental approach. We applied non-denaturing (native) mass spectrometry to five different homologs of MscL to determine the oligomeric state under more than 50 different experimental conditions elucidating lipid binding and subunit stoichiometry. We found equilibrium between pentameric and tetrameric species, which can be altered by detergent, disrupted by binding specific lipids, and perturbed by increasing temperature (37°C). We also established the presence of lipopolysaccharide bound to MscL and other membrane proteins expressed in Escherichia coli, revealing a potential source of heterogeneity. More generally, we highlight the use of mass spectrometry in probing membrane proteins under a variety of detergent-lipid environments relevant to structural biology.
Collapse
Affiliation(s)
- Eamonn Reading
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Troy A Walton
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Idlir Liko
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Michael T Marty
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Arthur Laganowsky
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering 114-96, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carol V Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
21
|
Kocer A. Mechanisms of mechanosensing - mechanosensitive channels, function and re-engineering. Curr Opin Chem Biol 2015; 29:120-7. [PMID: 26610201 DOI: 10.1016/j.cbpa.2015.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Sensing and responding to mechanical stimuli is an ancient behavior and ubiquitous to all forms of life. One of its players 'mechanosensitive ion channels' are involved in processes from osmosensing in bacteria to pain in humans. However, the mechanism of mechanosensing is yet to be elucidated. This review describes recent developments in the understanding of a bacterial mechanosensitive channel. Force from the lipid principle of mechanosensation, new methods to understand protein-lipid interactions, the role of water in the gating, the use of engineered mechanosensitive channels in the understanding of the gating mechanism and application of the accumulated knowledge in the field of drug delivery, drug design and sensor technologies are discussed.
Collapse
Affiliation(s)
- Armagan Kocer
- University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
22
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
23
|
Pacheco-Torres J, Mukherjee N, Walko M, López-Larrubia P, Ballesteros P, Cerdan S, Kocer A. Image guided drug release from pH-sensitive Ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1345-54. [DOI: 10.1016/j.nano.2015.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/03/2015] [Accepted: 03/29/2015] [Indexed: 01/11/2023]
|
24
|
Inducible release of particulates from liposomes using the mechanosensitive channel of large conductance and L-α-lysophosphatidylcholine. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:521-30. [PMID: 26143502 DOI: 10.1007/s00249-015-1055-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/07/2015] [Accepted: 06/17/2015] [Indexed: 01/05/2023]
Abstract
The mechanosensitive channel of large conductance (MscL) from Escherichia coli is a prototype for the mechanosensitive class of ion channels and opens one of the largest known gated transmembrane pores. As such, MscL offers the structural framework for the development of liposomal nanovalves for biotechnological applications. Here we incorporated MscL into liposomes and investigated the effects of L-α-lysophosphatidylcholine (LPC) with varying acyl chain lengths or saturation on its pore gating. This was measured by the efflux of encapsulated 5,6-carboxyfluorescein (CF) from the MscL proteoliposomes. Efflux improved in the presence of shorter and double-bonded LPC acyl chains. It was also dependent on the detergent concentration employed during MscL purification. MscL purified in 2 mM dodecyl β-D-maltopyranoside (DDM) had a marked increase in CF efflux compared to MscL purified in 1 mM DDM when treated with LPC. The purification conditions also resulted in increased efflux from proteoliposomes containing the G22C-MscL pore mutant channel, which requires higher membrane tension for its activation compared to WT-MscL.
Collapse
|
25
|
Chandramouli B, Di Maio D, Mancini G, Barone V, Brancato G. Breaking the hydrophobicity of the MscL pore: insights into a charge-induced gating mechanism. PLoS One 2015; 10:e0120196. [PMID: 25825909 PMCID: PMC4380313 DOI: 10.1371/journal.pone.0120196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The mechanosensitive channel of large conductance (MscL) is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.
Collapse
Affiliation(s)
| | - Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- * E-mail:
| |
Collapse
|
26
|
Knipe PC, Thompson S, Hamilton AD. Ion-mediated conformational switches. Chem Sci 2015; 6:1630-1639. [PMID: 28694943 PMCID: PMC5482205 DOI: 10.1039/c4sc03525a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023] Open
Abstract
Molecular switches are ubiquitous in Nature and provide the basis of many forms of transport and signalling. Single synthetic molecules that change conformation, and thus function, reversibly in a stimulus-dependent manner are of great interest not only to chemists but society in general; myriad applications exist in storage, display, sensing and medicine. Here we describe recent developments in the area of ion-mediated switching.
Collapse
Affiliation(s)
- Peter C Knipe
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , UK . ; ; Tel: +44 (0)1865 275978
| | - Sam Thompson
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , UK . ; ; Tel: +44 (0)1865 275978
| | - Andrew D Hamilton
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , UK . ; ; Tel: +44 (0)1865 275978
| |
Collapse
|
27
|
Abstract
The mechanosensitive channel of large conductance, MscL, has been proposed as a triggered nanovalve to be used in drug release and other nanodevices. It is a small homopentameric bacterial protein that has the largest gated pore known: greater than 30 Å. Large molecules, even small proteins can be released through MscL. Although MscL normally gates in response to membrane tension, early studies found that hydrophilic or charged residue substitutions near the constriction of the channel leads to pore opening. Researchers have successfully changed the modality of MscL to open to stimuli such as light by chemically modifying a single residue, G22, within the MscL pore. Here, by utilizing in vivo, liposome efflux, and patch clamp assays we compared modification of G22 with that of another neighboring residue, G26, and demonstrate that modifying G26 may be a better choice for triggered nanovalves used for triggered vesicular release of compounds.
Collapse
|
28
|
Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proc Natl Acad Sci U S A 2014; 111:17170-5. [PMID: 25404294 DOI: 10.1073/pnas.1413118111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility-mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins.
Collapse
|
29
|
Urban M, Kleefen A, Mukherjee N, Seelheim P, Windschiegl B, Vor der Brüggen M, Koçer A, Tampé R. Highly parallel transport recordings on a membrane-on-nanopore chip at single molecule resolution. NANO LETTERS 2014; 14:1674-80. [PMID: 24524682 PMCID: PMC3953990 DOI: 10.1021/nl5002873] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/08/2014] [Indexed: 05/21/2023]
Abstract
Membrane proteins are prime drug targets as they control the transit of information, ions, and solutes across membranes. Here, we present a membrane-on-nanopore platform to analyze nonelectrogenic channels and transporters that are typically not accessible by electrophysiological methods in a multiplexed manner. The silicon chip contains 250,000 femtoliter cavities, closed by a silicon dioxide top layer with defined nanopores. Lipid vesicles containing membrane proteins of interest are spread onto the nanopore-chip surface. Transport events of ligand-gated channels were recorded at single-molecule resolution by high-parallel fluorescence decoding.
Collapse
Affiliation(s)
- Michael Urban
- Institute
of Biochemistry, Biocenter, Goethe-University, Frankfurt, Germany
| | - Alexander Kleefen
- Institute
of Biochemistry, Biocenter, Goethe-University, Frankfurt, Germany
| | - Nobina Mukherjee
- Department
of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | - Armagan Koçer
- Department
of Biochemistry, University of Groningen, The Netherlands
| | - Robert Tampé
- Institute
of Biochemistry, Biocenter, Goethe-University, Frankfurt, Germany
- Cluster
of Excellence − Macromolecular Complexes, Goethe-University, Frankfurt, Germany
| |
Collapse
|
30
|
Knipe PC, Lingard H, Jones IM, Thompson S, Hamilton AD. A Lewis acid-mediated conformational switch. Org Biomol Chem 2014; 12:7937-41. [DOI: 10.1039/c4ob01556h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An isonicotinamide-substituted diphenylacetylene undergoes conformational switching upon recognition of Lewis acids.
Collapse
Affiliation(s)
- Peter C. Knipe
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford, UK
| | - Hannah Lingard
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford, UK
| | - Ian M. Jones
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford, UK
| | - Sam Thompson
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford, UK
| | - Andrew D. Hamilton
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford, UK
| |
Collapse
|
31
|
SzymaŃski W, Yilmaz D, Koçer A, Feringa BL. Bright ion channels and lipid bilayers. Acc Chem Res 2013; 46:2910-23. [PMID: 23597020 DOI: 10.1021/ar4000357] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
If we look at a simple organism such as a zebrafish under a microscope, we would see many cells working in harmony. If we zoomed in, we would observe each unit performing its own tasks in a special aqueous environment isolated from the other units by a lipid bilayer approximately 5 nm thick. These confined units are social: they communicate with one another by sensing and responding to the chemical changes in their environment through receptors and ion channels. These channels control the highly specific and selective passage of ions from one side of the cell to the other and are embedded in lipid bilayers. The movement of ions through ion channels supports excitation and electrical signaling in the nervous system. Ion channels have fascinated scientists not only because of their specificity and selectivity, but also for their functions, the serious consequences when they malfunction, and the other potential applications of these molecules. Light is a useful trigger to control and manipulate ion channels externally. With the many state-of-the-art optical technologies available, light offers a high degree of spatial and temporal control, millisecond precision, and noninvasive intervention and does not change the chemical environment of the system of interest. In this Account, we discuss research toward the dynamic control of lipid bilayer assembly and channel function, particularly the transport across the lipid bilayer-ion channel barrier of cells using light. We first summarize the manipulation of ion channel activity with light to modulate the channel's natural activity. Based on the type of photoswitch employed, we can achieve novel functionalities with these channels, and control neural activity. Then we discuss the recent developments in light-induced transport through lipid bilayers. We focus on three different approaches: the incorporation of photoswitchable copolymers into the lipids, the doping of the lipid bilayer with photosensitive amphiphiles and the preparation of the lipid bilayers solely from photoswitchable lipids. These examples reflect the versatility of what we can achieve by manipulating biological systems with light, from triggering the permeability of a specific area of a lipid bilayer to controlling the behavior of a whole organism.
Collapse
Affiliation(s)
- Wiktor SzymaŃski
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Duygu Yilmaz
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - ArmaĞan Koçer
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L. Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
32
|
Oude Blenke E, Mastrobattista E, Schiffelers RM. Strategies for triggered drug release from tumor targeted liposomes. Expert Opin Drug Deliv 2013; 10:1399-410. [DOI: 10.1517/17425247.2013.805742] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Halža E, Bro TH, Bilenberg B, Koçer A. Well-Defined Microapertures for Ion Channel Biosensors. Anal Chem 2012; 85:811-5. [DOI: 10.1021/ac303005g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erik Halža
- Groningen Biomolecular Sciences and Biotechnology Institute & BioMaDe Technology Foundation, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | - Brian Bilenberg
- NIL Technology ApS, Diplomvej 381, DK-2800, Kongens Lyngby, Denmark
| | - Armağan Koçer
- Groningen Biomolecular Sciences and Biotechnology Institute & BioMaDe Technology Foundation, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
34
|
Doerner JF, Febvay S, Clapham DE. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nat Commun 2012; 3:990. [PMID: 22871809 PMCID: PMC3651673 DOI: 10.1038/ncomms1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022] Open
Abstract
Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter >25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid controlled uptake of membrane-impermeable molecules. We first demonstrate that MscL gating in response to increased membrane tension is preserved in mammalian cell membranes. Molecular delivery is controlled by adopting an established method of MscL charge-induced activation. We then determine pore size limitations using fluorescently labelled model cargoes. Finally, we activate MscL to introduce the cell-impermeable bi-cyclic peptide phalloidin, a specific marker for actin filaments, into cells. We propose that MscL will be a useful tool for gated and controlled delivery of bioactive molecules into cells.
Collapse
Affiliation(s)
- Julia F Doerner
- HHMI, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Nanopore sensors: From hybrid to abiotic systems. Biosens Bioelectron 2012; 38:1-10. [DOI: 10.1016/j.bios.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/02/2012] [Accepted: 05/12/2012] [Indexed: 11/22/2022]
|
36
|
The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 2012; 194:4802-9. [PMID: 22685280 DOI: 10.1128/jb.00576-12] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-celled organisms must survive exposure to environmental extremes. Perhaps one of the most variable and potentially life-threatening changes that can occur is that of a rapid and acute decrease in external osmolarity. This easily translates into several atmospheres of additional pressure that can build up within the cell. Without a protective mechanism against such pressures, the cell will lyse. Hence, most microbes appear to possess members of one or both families of bacterial mechanosensitive channels, MscS and MscL, which can act as biological emergency release valves that allow cytoplasmic solutes to be jettisoned rapidly from the cell. While this is undoubtedly a function of these proteins, the discovery of the presence of MscS homologues in plant organelles and MscL in fungus and mycoplasma genomes may complicate this simplistic interpretation of the physiology underlying these proteins. Here we compare and contrast these two mechanosensitive channel families, discuss their potential physiological roles, and review some of the most relevant data that underlie the current models for their structure and function.
Collapse
|
37
|
Yang LM, Wray R, Parker J, Wilson D, Duran RS, Blount P. Three routes to modulate the pore size of the MscL channel/nanovalve. ACS NANO 2012; 6:1134-1141. [PMID: 22206349 PMCID: PMC3289768 DOI: 10.1021/nn203703j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MscL is a bacterial mechanosensitive channel that protects cells from lysis upon acute decrease in external osmotic environment. It is one of the best characterized mechanosensors known, thus serving as a paradigm of how such molecules sense and respond to stimuli. In addition, the fact that it can be genetically modified, expressed, isolated, and manipulated has led to its proposed use as a triggered nanovalve for various functions including sensors within microelectronic array chips, as well as vesicular-based targeted drug release. X-ray crystallography reveals a homopentameric complex with each subunit containing two transmembrane α-helices (TM1 and TM2) and a single carboxyl terminal α-helix arranging within the complex to form a 5-fold cytoplasmic bundle (CB), whose function and stability remain unclear. In this study, we show three routes that throttle the open channel conductance. When the linker between the TM2 and CB domain is shortened by deletions or constrained by either cross-linking or heavy metal coordination, the conductance of the channel is reduced; in the later two cases, even reversibly. While they have implications for the stability of the CB, these data also provide routes for engineering MscL sensors that are more versatile for potential nanotech devices.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, University of Texas Medical Center at Dallas, Dallas, Texas, USA
| | - Robin Wray
- Department of Physiology, University of Texas Medical Center at Dallas, Dallas, Texas, USA
| | - Juandell Parker
- Department of Physiology, University of Texas Medical Center at Dallas, Dallas, Texas, USA
| | - Danyell Wilson
- Department of Chemistry, University of Florida, current address Moffitt Cancer Center, Tampa, FL
| | - Randolph S. Duran
- Department of Chemistry, Louisiana State University, Baton Rouge, LA
| | - Paul Blount
- Department of Physiology, University of Texas Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
38
|
Mechanosensitive channels: what can they do and how do they do it? Structure 2012; 19:1356-69. [PMID: 22000509 DOI: 10.1016/j.str.2011.09.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/16/2022]
Abstract
While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.
Collapse
|
39
|
Bonardi F, Nouwen N, Feringa BL, Driessen AJM. Protein conducting channels—mechanisms, structures and applications. MOLECULAR BIOSYSTEMS 2012; 8:709-19. [DOI: 10.1039/c2mb05433g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Abstract
Membranes form natural barriers that need to be permeable to diverse matter like ions and substrates. This permeability is controlled by ion-channel proteins, which have attracted great interest for pharmaceutical applications. Ion-channel engineering (ICE) modifies biological ion channels by chemical/biological synthetis means. The goal is to obtain ion channels with modified or novel functionality. Three functional strategies exist. The first is the manipulation of the wider pores with robust β-barrel structures, such as those of α-hemolysin and porins. The second engineering approach focuses on the modification of narrow (mostly α-helical) pores to understand selectivity and modes of action. A third functional approach addresses channel gating by (photo)triggering the biological receptor that controls the channel. Several synthetis strategies have been developed and successfully utilized for the synthetic modification of biological ion-channels: the S-alkylation of specifically introduced Cys, protein semisynthesis by native chemical ligation, protein semisynthesis by protein trans-splicing, as well as nonsense-suppression methods. Structural studies (X-ray crystallography, NMR spectroscopy) are necessary to support the functional studies and to afford predictable engineering. The reprogramming and re-engineering of channels can be used for sensing applications, treatment of channelopathies, chemical neurobiology, and providing novel lead compounds for targeting ion channels.
Collapse
Affiliation(s)
- Wolfgang Grosse
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
41
|
Ishitsuka Y, Okumus B, Arslan S, Chen KH, Ha T. Temperature-independent porous nanocontainers for single-molecule fluorescence studies. Anal Chem 2010; 82:9694-701. [PMID: 21038883 DOI: 10.1021/ac101714u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we demonstrate the capability of using lipid vesicles biofunctionalized with protein channels to perform single-molecule fluorescence measurements over a biologically relevant temperature range. Lipid vesicles can serve as an ideal nanocontainer for single-molecule fluorescence measurements of biomacromolecules. One serious limitation of the vesicle encapsulation method has been that the lipid membrane is practically impermeable to most ions and small molecules, limiting its application to observing reactions in equilibrium with the initial buffer condition. To permeabilize the barrier, Staphylococcus aureus toxin α-hemolysin (aHL) channels have been incorporated into the membrane. These aHL channels have been characterized using single-molecule fluorescence resonance energy transfer signals from vesicle-encapsulated guanine-rich DNA that folds in a G-quadruplex motif as well as from the Rep helicase-DNA system. We show that these aHL channels are permeable to monovalent ions and small molecules, such as ATP, over the biologically relevant temperature range (17-37 °C). Ions can efficiently pass through preformed aHL channels to initiate DNA folding without any detectable delay. With addition of the cholesterol to the membrane, we also report a 35-fold improvement in the aHL channel formation efficiency, making this approach more practical for wider applications. Finally, the temperature-dependent single-molecule enzymatic study inside these nanocontainers is demonstrated by measuring the Rep helicase repetitive shuttling dynamics along a single-stranded DNA at various temperatures. The permeability of the biofriendly nanocontainer over a wide range of temperature would be effectively applied to other surface-based high-throughput measurements and sensors beyond the single-molecule fluorescence measurements.
Collapse
Affiliation(s)
- Yuji Ishitsuka
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
42
|
Yang LM, Blount P. Manipulating the permeation of charged compounds through the MscL nanovalve. FASEB J 2010; 25:428-34. [PMID: 20930114 DOI: 10.1096/fj.10-170076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MscL is a bacterial mechanosensor that serves as a biological emergency release valve, releasing cytoplasmic solutes to the environment on osmotic downshock. Previous studies have recognized that this channel has properties that make it ideal for use as a triggered nanovalve for vesicular-based targeted drug-release devices. One can even change the modality of the sensor. Briefly, the introduction of charges into the MscL pore lumen gates the channel in the absence of membrane tension; thus, by inserting compounds that acquire a charge on exposure to an alternative stimulus, such as light or pH, into the pore of the channel, controllable nanoswitches that detect these alternative modalities have been engineered. However, a charge in the pore lumen could not only encourage actuation of the nanopore but also have a significant influence on the permeation of large charged compounds, which would thus have important implications for the efficiency of drug-release devices. In this study, we used in vivo and electrophysiological approaches to demonstrate that the introduction of a charge into pore lumen of MscL does indeed influence the permeation of charged molecules. These effects were more drastic for larger compounds and, surprisingly, were related to the orientation of the MscL channel in the membrane.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | |
Collapse
|
43
|
Bonardi F, London G, Nouwen N, Feringa BL, Driessen AJM. Light-Induced Control of Protein Translocation by the SecYEG Complex. Angew Chem Int Ed Engl 2010; 49:7234-8. [DOI: 10.1002/anie.201002243] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Bonardi F, London G, Nouwen N, Feringa BL, Driessen AJM. Light-Induced Control of Protein Translocation by the SecYEG Complex. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Abstract
Shortly after the discovery of liposomes (J Mol Biol 13:238-252, 1965), Gregoriadis et al. (Lancet 1:1313-1316, 1974) suggested their use as drug delivery vesicles. Since then there have been many developments in liposomal composition, efficient drug encapsulation and retention, stability, and targeting (Biochim Biophys Acta 1113:171-199, 1992). However, even though some of the very potent drug formulations in liposomes were clinically approved, in most cases the amount of drug passively released from such ideal, long-circulating, sterically stable liposomes was not enough to show a therapeutic effect (Cancer Chemother Pharmacol 49:201-210, 2002; Cancer Chemother Pharmacol 48:266-268, 2001; Eur J Cancer 37:2015-2022, 2001; Breast Cancer Res Treat 77:185-188, 2003; Lung Cancer 34:427-432, 2001; Cancer Chemother Pharmacol 50:131-136, 2002). It has been hypothesized that the enhanced release at the target site will significantly improve the specificity and efficacy of a liposomal drug (J Liposomes Res 8:299-335, 1998; Pharmaco Rev 51:691-744, 1999; Curr Opin Mol Ther 3:153-158, 2001). To solve this challenge, more research efforts were directed toward a triggered release, in response to a specific stimulus at a target site. Here, we present an engineered, bacterial channel protein as a remote-controlled nanovalve in sterically stable liposomes for a triggered release of the liposomal content on command.
Collapse
Affiliation(s)
- Armagğan Koçer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Reitz S, Cebi M, Reiß P, Studnik G, Linne U, Koert U, Essen LO. On the Function and Structure of Synthetically Modified Porins. Angew Chem Int Ed Engl 2009; 48:4853-7. [DOI: 10.1002/anie.200900457] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Reitz S, Cebi M, Reiß P, Studnik G, Linne U, Koert U, Essen L. Zur Funktion und Struktur synthetisch modifizierter Porine. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Brenzel S, Cebi M, Reiß P, Koert U, Mootz HD. Expanding the Scope of ProteinTrans-Splicing to Fragment Ligation of an Integral Membrane Protein: Towards Modulation of Porin-Based Ion Channels by Chemical Modification. Chembiochem 2009; 10:983-6. [DOI: 10.1002/cbic.200900039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Koçer A. A Remote Controlled Valve in Liposomes for Triggered Liposomal Release. J Liposome Res 2008; 17:219-25. [DOI: 10.1080/08982100701528203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Abstract
Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.
Collapse
Affiliation(s)
- Boris Martinac
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|