1
|
Zhang H, Luo J, Zhang Q, Xu Y, Yin Z, Hang W. Coulomb Field-Driven Desorption/Ionization by Femtosecond Laser for Mass Spectrometry Detection and Imaging. J Am Chem Soc 2025; 147:15923-15928. [PMID: 40085827 DOI: 10.1021/jacs.4c18652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Surface-assisted laser desorption/ionization (SALDI) offers promising prospects for mass spectrometry detection and imaging of small biomolecules, as it addresses most of the matrix-related issues encountered in conventional matrix-assisted laser desorption/ionization (MALDI). Currently, nearly all of the fundamental aspects and applications of SALDI depend on nanosecond (ns) lasers, whereas few efforts have been made to integrate ultrafast femtosecond (fs) lasers with SALDI. Therefore, the intrinsic fundamental principle remains poorly understood. Herein, a novel surface-assisted femtosecond laser desorption/ionization mass spectrometry (fs-SALDI-MS) platform was developed, which significantly reduces analyte fragmentation and preserves molecular integrity. Spectral interferences from surface-assisted materials and alkali-metal adducts are absent in fs-SALDI mass spectra. Ion survival yields continuously increase with decreasing laser pulse widths from 5 ns to 600 fs, highlighting a gradual transition from thermal to nonthermal effects. A lower absolute limit of detection down to ∼3 amol for representative antifungal and psychotropic drugs and clearer visualization of ultratrace drug residues on latent fingerprints can be achieved, indicating that fs-SALDI results in gentler and more efficient detection/ionization processes than mainstream ns-SALDI. The biological applicability of this method was further validated through 10 μm-spatial-resolution lipid imaging of mouse brain sections. In short, a novel Coulomb field-driven desorption/ionization mechanism is proposed for fs-SALDI, opening new avenues for the development of emerging fs-SALDI techniques with superior analytical performance.
Collapse
Affiliation(s)
- Heng Zhang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingkai Luo
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi Zhang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yizhu Xu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhibin Yin
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
A consolidative synopsis of the MALDI-TOF MS accomplishments for the rapid diagnosis of microbial plant disease pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Dou S, Lu J, Wang Z, Zhu Q, Chen C, Lu N. Laser desorption/ionization on nanostructured silicon: morphology matters. Phys Chem Chem Phys 2022; 24:24173-24180. [PMID: 36168826 DOI: 10.1039/d2cp03177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface morphology of the silicon nanostructure plays a crucial role in the laser desorption/ionization (LDI) process. Understanding the correlation between the surface morphology and LDI performance is the foundation for creating silicon substrates with high LDI efficiency. Most of the present studies focus only on the structural parameters (such as porosity, depth, total surface area, dimension, etc.) of a single structure, but their effects on LDI efficiency vary with the types of silicon structures. Herein, two representative types of silicon nanostructures, porous silicon (PSi) and thorny silicon (TSi), were created to address this issue. The results indicate that the PSi substrate can generate a stronger heat effect and is beneficial to desorption; the TSi substrate can facilitate electron transfer and is favorable to ionization. Subsequently, the assertion was further confirmed by simultaneously detecting a dozen of standard samples and a real sample on both the TSi and PSi substrates, in which PSi can significantly enhance the detection signals of organic salts, whereas the TSi substrate can greatly increase the LDI efficiencies of neutral analytes. This finding provides a foundation for improving the LDI performance by tailoring silicon nanostructures, which is helpful for designing and creating substrates with high LDI performance.
Collapse
Affiliation(s)
- Shuzhen Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Qunyan Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
4
|
Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9080209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In an era where humanity is reinstating its lost hope and expectation on natural products, green tea occupies quite a position for what it has proven to be, in its endeavors for human welfare and health. Epigallocatechin-3-gallate (EGCG) is the key to the vast biological activities of green tea. Green tea is no longer in the backdrop; it has emerged as the most viral, trending bioactive molecule when it comes to health benefits for human beings. This review focuses on the use of various analytical techniques for the analysis of EGCG. That which has been achieved so far, in terms of in vitro, pure component analysis, as well as those spikes in biological fluids and those in vivo in animal and human samples, was surveyed and presented. The use of MS-based techniques for the analysis of EGCG is elaborately reviewed and the need for improvising the applications is explained. The review emphasizes that there is plenty of room to explore matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications in this subject area.
Collapse
|
5
|
Hu X, Zhang Y, Deng C, Sun N, Wu H. Metabolic Molecular Diagnosis of Inflammatory Bowel Disease by Synergistical Promotion of Layered Titania Nanosheets with Graphitized Carbon. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:261-271. [PMID: 36939785 PMCID: PMC9590550 DOI: 10.1007/s43657-022-00055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
Abstract
Due to inefficient diagnostic methods, inflammatory bowel disease (IBD) normally progresses into severe complications including cancer. Highly efficient extraction and identification of metabolic fingerprints are of significance for disease surveillance. In this work, we synthesized a layered titania nanosheet doped with graphitized carbon (2D-GC-mTNS) through a simple one-step assembly process for assisting laser desorption ionization mass spectrometry (LDI-MS) for metabolite analysis. Based on the synergistic effect of graphitized carbon and mesoporous titania, 2D-GC-mTNS exhibits good extraction ability including high sensitivity (< 1 fmol µL-1) and great repeatability toward metabolites. A total of 996 fingerprint spectra were collected from hundreds of native urine samples (including IBD patients and healthy controls), each of which contained 1220 m/z metabolite features. Diagnostic model was further established for precise discrimination of patients from healthy controls, with high area under the curve value of 0.972 and 0.981 toward discovery cohort and validation cohort, respectively. The 2D-GC-mTNS promotes LDI-MS to be close to clinical application, with rapid speed, minimum sample consumption and free of sample pretreatment. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00055-0.
Collapse
Affiliation(s)
- Xufang Hu
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Institute of Metabolism & Integrate Biology (IMIB), Fudan University, Shanghai, 200433 China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Institute of Metabolism & Integrate Biology (IMIB), Fudan University, Shanghai, 200433 China
| | - Chunhui Deng
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Institute of Metabolism & Integrate Biology (IMIB), Fudan University, Shanghai, 200433 China
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Nianrong Sun
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Hao Wu
- grid.8547.e0000 0001 0125 2443Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
6
|
Yang J, Huang L, Qian K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210222. [PMID: 37323704 PMCID: PMC10191060 DOI: 10.1002/exp.20210222] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
In vitro diagnostics (IVD) has played an indispensable role in healthcare system by providing necessary information to indicate disease condition and guide therapeutic decision. Metabolic analysis can be the primary choice to facilitate the IVD since it characterizes the downstream metabolites and offers real-time feedback of the human body. Nanomaterials with well-designed composition and nanostructure have been developed for the construction of high-performance detection platforms toward metabolic analysis. Herein, we summarize the recent progress of nanomaterials-assisted metabolic analysis and the related applications in IVD. We first introduce the important role that nanomaterials play in metabolic analysis when coupled with different detection platforms, including electrochemical sensors, optical spectrometry, and mass spectrometry. We further highlight the nanomaterials-assisted metabolic analysis toward IVD applications, from the perspectives of both the targeted biomarker quantitation and untargeted fingerprint extraction. This review provides fundamental insights into the function of nanomaterials in metabolic analysis, thus facilitating the design of next-generation diagnostic devices in clinical practice.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Palermo A. Mass Spectrometry Imaging of Metabolites by Nanostructure Initiator Mass Spectrometry with Fluorinated Gold Nanoparticles. Methods Mol Biol 2022; 2437:117-125. [PMID: 34902144 DOI: 10.1007/978-1-0716-2030-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanostructure initiator mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) enables the detection and spatial localization of a breath of polar metabolites and lipids with high spatial resolution and ultrasensitivity. Here we describe the methods and procedures for the synthesis and application of f-AuNPs for NIMS of small molecule metabolites and lipids in biological tissues, encompassing sample preparation, mass spectrometric detection, and data analysis and interpretation.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Samarah LZ, Vertes A. Mass Spectrometry Imaging of Biological Tissues by Laser Desorption Ionization from Silicon Nanopost Arrays. Methods Mol Biol 2022; 2437:89-98. [PMID: 34902142 DOI: 10.1007/978-1-0716-2030-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mass spectrometry imaging (MSI) plays an expanding role in the label-free spatial mapping of hundreds of molecules simultaneously. Currently, matrix-assisted laser desorption ionization (MALDI) is among the most widely adopted MSI techniques. However, matrix application can impact the fidelity of spatial distributions, and matrix selection and related spectral interferences in the low mass range can lead to biased molecular coverage. Nanophotonic ionization from silicon nanopost arrays (NAPA) is an emerging matrix-free MSI platform with enhanced sensitivity for several molecular classes, for example, neutral lipids and biooligomers. Here, we describe a protocol with minimal sample preparation for NAPA-MSI of metabolites, lipids, and biooligomers from biological tissues.
Collapse
Affiliation(s)
- Laith Z Samarah
- Department of Chemistry, George Washington University, Washington, DC, USA.
| | - Akos Vertes
- Department of Chemistry, George Washington University, Washington, DC, USA.
| |
Collapse
|
9
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Xu H, Zhang Z, Wang Y, Lu W, Min Q. Engineering of nanomaterials for mass spectrometry analysis of biomolecules. Analyst 2021; 146:5779-5799. [PMID: 34397044 DOI: 10.1039/d1an00860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) based analysis has received intense attention in diverse biological fields. However, direct MS interrogation of target biomolecules in complex biological samples is still challenging, due to the extremely low abundance and poor ionization potency of target biological species. Innovations in nanomaterials create new auxiliary tools for deep and comprehensive MS characterization of biomolecules. More recently, growing research interest has been directed to the compositional and structural engineering of nanomaterials for enriching target biomolecules prior to MS analysis, enhancing the ionization efficiency in MS detection and designing biosensing nanoprobes in sensitive MS readout. In this review, we mainly focus on the recent advances in the engineering of nanomaterials towards their applications in sample pre-treatment, desorption/ionization matrices and ion signal amplification for MS profiling of biomolecules. This review will provide a toolbox of nanomaterials for researchers devoted to developing analytical methods and practical applications in the biological MS field.
Collapse
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
11
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
12
|
Palermo A. Charting Metabolism Heterogeneity by Nanostructure Imaging Mass Spectrometry: From Biological Systems to Subcellular Functions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2392-2400. [PMID: 33595331 DOI: 10.1021/jasms.0c00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of metabolism heterogeneity is essential to understand the role of metabolites in supporting and regulating biological functions. To this end, several mass spectrometry imaging (MSI) approaches have been proposed for the detection of small molecule metabolites. However, high noise from the ionization matrix and low metabolome coverage hinder their applicability for untargeted metabolomics studies across space. In this context, nanostructure imaging (/initiator) mass spectrometry (NIMS) and NIMS with fluorinated gold nanoparticles (f-AuNPs) are attractive strategies for comprehensive MSI of metabolites in biological systems, which can provide heterogeneous metabolome coverage, ultrahigh sensitivity, and high lateral resolution. In particular, NIMS with f-AuNPs permits the simultaneous detection of polar metabolites and lipids in a single and cohesive analytical session, thus allowing the systems-level interpretation of metabolic changes. In this Perspective article, we discuss the use of NIMS and f-AuNPs in the exploration of metabolism heterogeneity and provide a critical outlook on future applications of this technology for revealing the metabolic architecture that supports biological functions in health and disease, from whole organisms to tissues, single cells, and subcellular compartments.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, United States
| |
Collapse
|
13
|
Samarah LZ, Vertes A. Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms. VIEW 2020. [DOI: 10.1002/viw.20200063] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laith Z. Samarah
- Department of Chemistry George Washington University Washington DC USA
| | - Akos Vertes
- Department of Chemistry George Washington University Washington DC USA
| |
Collapse
|
14
|
Single-cell Metabolomics Analysis by Microfluidics and Mass Spectrometry: Recent New Advances. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00138-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Hamdi A, Hosu IS, Coffinier Y. Influence of buried oxide layers of nanostructured SOI surfaces on matrix-free LDI-MS performances. Analyst 2020; 145:1328-1336. [PMID: 31942880 DOI: 10.1039/c9an02181g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this paper, we report on the nanostructuration of the silicon crystalline top layer of different "home-made" SOI substrates presenting various buried oxide (BOx) layer thicknesses. The nanostructuration was achieved via a one-step metal assisted chemical etching (MACE) procedure. The etched N-SOI substrate surfaces were then characterized by AFM, SEM and photoluminescence. To investigate their laser desorption/ionization mass spectrometry performances, the different surfaces have been assessed towards peptide mixtures. We have shown that the matrix-free LDI process occurred from surface heating after laser irradiation and was fostered by thermal confinement in the thin nanostructured Si surface layer. This thermal confinement was enhanced with the increase of the buried oxide layer thickness until an optimal thickness of 200 nm for which the best results in terms of signal intensities, peptide discrimination and spot to spot and surface to surface variations were found.
Collapse
Affiliation(s)
- Abderrahmane Hamdi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
16
|
He H, Guo Z, Wen Y, Xu S, Liu Z. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal Chim Acta 2019; 1090:1-22. [DOI: 10.1016/j.aca.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
17
|
Ali A, Abouleila Y, Shimizu Y, Hiyama E, Emara S, Mashaghi A, Hankemeier T. Single-cell metabolomics by mass spectrometry: Advances, challenges, and future applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Li Y, Luo P, Cao X, Liu H, Wang J, Wang J, Zhan L, Nie Z. Enhancing surface-assisted laser desorption ionization mass spectrometry performance by integrating plasmonic hot-electron transfer effect through surface modification. Chem Commun (Camb) 2019; 55:5769-5772. [DOI: 10.1039/c9cc02541c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Surface-assisted laser desorption ionization mass spectrometry (SALDI MS) performances were enhanced by modifying surfaces to include a plasmonic hot-electron transfer effect.
Collapse
Affiliation(s)
- Yafeng Li
- College of Chemical Engineering
- Jiujiang University
- Jiujiang
- China
- Beijing National Laboratory for Molecular Sciences
| | - Peiqi Luo
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Xiaohua Cao
- College of Chemical Engineering
- Jiujiang University
- Jiujiang
- China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Jianing Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Lingpeng Zhan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
19
|
Muthu M, Gopal J, Chun S. Nanopost array laser desorption ionization mass spectrometry (NAPA-LDI MS): Gathering moss? Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Hamdi A, Hosu IS, Addad A, Hartkoorn R, Drobecq H, Melnyk O, Ezzaouia H, Boukherroub R, Coffinier Y. MoS2/TiO2/SiNW surface as an effective substrate for LDI-MS detection of glucose and glutathione in real samples. Talanta 2017; 171:101-107. [DOI: 10.1016/j.talanta.2017.04.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
21
|
Singh R, Bezuidenhout LW, Jemere A, Wang Z, Brett M, Harrison DJ. Engineering matrix-free laser desorption ionization mass spectrometry using glancing angle deposition films. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:631-638. [PMID: 28075041 DOI: 10.1002/rcm.7826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
RATIONALE Thin, nanoporous films fabricated using Glancing Angle Deposition (GLAD) technology are demonstrated for solid matrix laser desorption/ionization mass spectrometry (SMALDI-MS). GLAD allows facile engineering of nanoporosity, film thickness, post alignment, and material composition, as demonstrated here by the fabrication of Co-GLAD and Si-GLAD films for SMALDI, and by exploration of the SMALDI performance as a function of thickness, post density, and angle of the post relative to surface normal. METHODS GLAD films were prepared by electron beam evaporation onto silicon substrates, using steep angles of incidence for the vacuum deposition, with computer controlled substrate rotation. LDI from the GLAD films was evaluated using an MDS-Sciex time-of-flight (TOF) MALDI mass spectrometer. RESULTS Co-GLAD films give a limit of quantitation of 6 fmol for complex carbohydrate derivatives, and slanted-post Si-GLAD films show up to three times higher sensitivity than vertical post structures. Reproducibility of both Si and Co films is much higher than conventional MALDI methods for m/z below at least 2100 Da. Both reproducibility and detection limits are comparable to or better than other nano-structured materials. Co-GLAD films are significantly better in performance than Co powders or Co thin films on silicon substrates previously evaluated. CONCLUSIONS The flexibility of GLAD for thin film fabrication of LDI materials is demonstrated by the range of nanoporous materials that can be grown, and the fine control over structural conformation, thickness and porosity. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Reshma Singh
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada, T6G 2G2
| | - Louis W Bezuidenhout
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Abebaw Jemere
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, AB, Canada, T6G 2M9
| | - Zhen Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Michael Brett
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, AB, Canada, T6G 2M9
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada, T6G 2G2
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, AB, Canada, T6G 2M9
| |
Collapse
|
22
|
Marsico ALM, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW. Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Anal Chem 2017; 89:3009-3014. [PMID: 28193006 DOI: 10.1021/acs.analchem.6b04538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials have been extensively used as alternate matrices to minimize the low molecular weight interferences observed in typical MALDI but such nanomaterials typically do not improve the spot-to-spot variability that is commonly seen. In this work, we demonstrate that nanoparticles and low matrix concentrations (<2.5 mg/mL) can be used to homogeneously concentrate analytes into a narrow ring by taking advantage of the "coffee ring" effect. Concentration of the samples in this way leads to enhanced signals when compared to conventional MALDI, with higher m/z analytes being enhanced to the greatest extent. Moreover, the ionization suppression often observed in samples with high salt concentrations can be overcome by preparing samples in this way. The ring that is formed is readily visible, allowing the laser to be focused only on spots that contain analyte. The coffee-ring effect represents a new mode by which nanomaterials can be used to enhance the MALDI-based detection of biomolecules.
Collapse
Affiliation(s)
- Alyssa L M Marsico
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Ryan F Landis
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
23
|
Kurylo I, Dupré M, Cantel S, Enjalbal C, Drobecq H, Szunerits S, Melnyk O, Boukherroub R, Coffinier Y. Characterization of peptide attachment on silicon nanowires by X-ray photoelectron spectroscopy and mass spectrometry. Analyst 2017; 142:969-978. [DOI: 10.1039/c6an02588a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs’ surface.
Collapse
Affiliation(s)
| | - Mathieu Dupré
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- CNRS
- ENSCM
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- CNRS
- ENSCM
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- CNRS
- ENSCM
| | - Hervé Drobecq
- Institut de Biologie de Lille (IBL
- CNRS-UMR 8161)
- Université de Lille Nord de France
- 59021 Lille
- France
| | | | - Oleg Melnyk
- Institut de Biologie de Lille (IBL
- CNRS-UMR 8161)
- Université de Lille Nord de France
- 59021 Lille
- France
| | | | | |
Collapse
|
24
|
Knochenmuss R. The Coupled Chemical and Physical Dynamics Model of MALDI. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:365-385. [PMID: 27070182 DOI: 10.1146/annurev-anchem-071015-041750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects.
Collapse
Affiliation(s)
- Richard Knochenmuss
- Departement für Chemie und Biochemie, Universität Bern, CH-3012 Bern, Switzerland;
| |
Collapse
|
25
|
Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew Chem Int Ed Engl 2016; 55:4482-6. [DOI: 10.1002/anie.201511691] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Sylwia A. Stopka
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Charles Rong
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Andrew R. Korte
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | - Javad Nazarian
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | | | | | - Akos Vertes
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| |
Collapse
|
26
|
Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sylwia A. Stopka
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Charles Rong
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Andrew R. Korte
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | - Javad Nazarian
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | | | | | - Akos Vertes
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| |
Collapse
|
27
|
Marsico ALM, Creran B, Duncan B, Elci SG, Jiang Y, Onasch TB, Wormhoudt J, Rotello VM, Vachet RW. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1931-1937. [PMID: 26202457 DOI: 10.1007/s13361-015-1223-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 05/24/2023]
Abstract
Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alyssa L M Marsico
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Brian Creran
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - S Gokhan Elci
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Ying Jiang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | | | | | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
28
|
Morris NJ, Anderson H, Thibeault B, Vertes A, Powell MJ, Razunguzwa TT. Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching. RSC Adv 2015. [DOI: 10.1039/c5ra11875a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A nanofabricated laser desorption ionization mass spectrometry (LDI-MS) chip for quantitation of small molecules.
Collapse
Affiliation(s)
| | | | - Brian Thibeault
- University of California Santa Barbara (UCSB)
- Santa Barbara
- USA
| | - Akos Vertes
- George Washington University
- Dept of Chemistry
- USA
| | | | | |
Collapse
|
29
|
Diologent L, Franck J, Wisztorski M, Treizebre A, Focsa C, Fournier I, Ziskind M. On the Origin of Increased Sensitivity and Mass Resolution Using Silicon Masks in MALDI. Anal Chem 2014; 86:1404-13. [DOI: 10.1021/ac401329r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Laurent Diologent
- Laboratoire de
Spectrométrie de Masse Biologique Fondamentale et Appliquée
- EA 4550, Bât SN3, Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
- Laboratoire
de Physique des Lasers, Atomes et Molécules - CNRS UMR 8523, Bât P5,Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
| | - Julien Franck
- Laboratoire de
Spectrométrie de Masse Biologique Fondamentale et Appliquée
- EA 4550, Bât SN3, Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
| | - Maxence Wisztorski
- Laboratoire de
Spectrométrie de Masse Biologique Fondamentale et Appliquée
- EA 4550, Bât SN3, Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
| | - Anthony Treizebre
- Institute of Electronics,
Microelectronics and Nanotechnology - UMR-CNRS 8520, Université Lille 1, F59655 Villeneuve d’Ascq, France
| | - Cristian Focsa
- Laboratoire
de Physique des Lasers, Atomes et Molécules - CNRS UMR 8523, Bât P5,Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
| | - Isabelle Fournier
- Laboratoire de
Spectrométrie de Masse Biologique Fondamentale et Appliquée
- EA 4550, Bât SN3, Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
| | - Michael Ziskind
- Laboratoire
de Physique des Lasers, Atomes et Molécules - CNRS UMR 8523, Bât P5,Université Lille 1, F-59655 Villeneuve
d’Ascq Cedex, France
| |
Collapse
|
30
|
Walker BN, Antonakos C, Retterer ST, Vertes A. Metabolic Differences in Microbial Cell Populations Revealed by Nanophotonic Ionization. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Walker BN, Antonakos C, Retterer ST, Vertes A. Metabolic differences in microbial cell populations revealed by nanophotonic ionization. Angew Chem Int Ed Engl 2013; 52:3650-3. [PMID: 23447072 DOI: 10.1002/anie.201207348] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/19/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Bennett N Walker
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA
| | | | | | | |
Collapse
|
32
|
Wang Y, Zeng Z, Li J, Chi L, Guo X, Lu N. Biomimetic antireflective silicon nanocones array for small molecules analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:66-73. [PMID: 23250665 DOI: 10.1007/s13361-012-0498-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 05/27/2023]
Abstract
Biomimetic antireflective silicon nanocones array is used for analysis of small molecules by mass spectrometry. The role of the absorbed laser energy and its distribution in the laser desorption/ionization process has been investigated by varying the antireflective features precisely. By optimizing the antireflective silicon array, the absorbed laser energy can be channeled completely into the desorption/ionization of analytes. The optimized silicon array exhibits excellent performance to detect peptide, amino acid, drug molecule, and carbohydrate without any interference in the low-mass region.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Dupré M, Enjalbal C, Cantel S, Martinez J, Megouda N, Hadjersi T, Boukherroub R, Coffinier Y. Investigation of Silicon-Based Nanostructure Morphology and Chemical Termination on Laser Desorption Ionization Mass Spectrometry Performance. Anal Chem 2012; 84:10637-44. [DOI: 10.1021/ac3021104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mathieu Dupré
- Institut des Biomolécules
Max Mousseron, UMR 5247, Universités Montpellier 1 et 2, CNRS, Bâtiment Chimie (17), Université
Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Christine Enjalbal
- Institut des Biomolécules
Max Mousseron, UMR 5247, Universités Montpellier 1 et 2, CNRS, Bâtiment Chimie (17), Université
Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Sonia Cantel
- Institut des Biomolécules
Max Mousseron, UMR 5247, Universités Montpellier 1 et 2, CNRS, Bâtiment Chimie (17), Université
Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Jean Martinez
- Institut des Biomolécules
Max Mousseron, UMR 5247, Universités Montpellier 1 et 2, CNRS, Bâtiment Chimie (17), Université
Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Nacéra Megouda
- Institut de Recherche Interdisciplinaire, USR CNRS 3078, Parc de la Haute
Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq,
France
- Unité de Développement de la Technologie du Silicium, 2 Bd. Frantz Fanon, B.P.
140 Alger-7 merveilles, Alger, Algérie
| | - Toufik Hadjersi
- Unité de Développement de la Technologie du Silicium, 2 Bd. Frantz Fanon, B.P.
140 Alger-7 merveilles, Alger, Algérie
| | - Rabah Boukherroub
- Institut de Recherche Interdisciplinaire, USR CNRS 3078, Parc de la Haute
Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq,
France
| | - Yannick Coffinier
- Institut de Recherche Interdisciplinaire, USR CNRS 3078, Parc de la Haute
Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq,
France
| |
Collapse
|
34
|
Walker BN, Stolee JA, Vertes A. Nanophotonic Ionization for Ultratrace and Single-Cell Analysis by Mass Spectrometry. Anal Chem 2012; 84:7756-62. [DOI: 10.1021/ac301238k] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bennett N. Walker
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| | - Jessica A. Stolee
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| | - Akos Vertes
- W. M. Keck Institute for Proteomics Technology and
Applications, Department of Chemistry, The George Washington University, Washington, District of Columbia 20052,
United States
| |
Collapse
|
35
|
Kim SH, Lee A, Song JY, Han SY. Laser-induced thermal desorption facilitates postsource decay of peptide ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:935-941. [PMID: 22359094 DOI: 10.1007/s13361-012-0355-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
We investigated the thermal mechanism involved in laser desorption/ionization (LDI) of thermally labile molecules from the flat surfaces of amorphous Si (a-Si) and crystalline Si (c-Si). a-Si was selected for this study because of its thermal property, such as low thermal conductivity; thus, it was predicted to be highly susceptible to laser-induced surface heating. By virtue of lack of surface nanostructures, the flat surfaces offer a simple model system to focus on the thermal mechanism, avoiding other effects, including possible non-thermal contributions that can arise from the physical existence of surface nanostructures. For the energetics study, the internal energies of substituted benzylpyridinium ions produced by LDI on the bare and coated surfaces of a-Si and c-Si were obtained using the survival yield method. The results, including LDI thresholds, ion yields, and internal energies all suggested that the LDI mechanism would be indeed thermal, which is most likely promoted by thermal desorption caused by laser-induced surface heating. In addition, the LDI process driven by laser-induced thermal desorption (LITD) was also found to be capable of depositing an excessive internal energy in resulting LDI ions, which underwent a dissociation. It exhibited the essentially same features as in postsource decay (PSD) in MALDI-TOF/TOF mass spectrometry. We report that the LDI process by LITD offers not only a way of intact ionization but also a facile means for PSD of peptide ions, which this work demonstrates is well suited to peptide sequencing using TOF/TOF mass spectrometry.
Collapse
Affiliation(s)
- Shin Hye Kim
- Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
36
|
Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A. Laser–nanostructure interactions for ion production. Phys Chem Chem Phys 2012; 14:8453-71. [DOI: 10.1039/c2cp00038e] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. MASS SPECTROMETRY REVIEWS 2011; 30:435-478. [PMID: 21254192 DOI: 10.1002/mas.20288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review the literature that describes how (matrix-assisted) laser desorption/ionization (MA)LDI target plates can be used not only as sample supports, but beyond that: as functional parts of analytical protocols that incorporate detection by MALDI-MS or matrix-free LDI-MS. Numerous steps of analytical procedures can be performed directly on the (MA)LDI target plates prior to the ionization of analytes in the ion source of a mass spectrometer. These include homogenization, preconcentration, amplification, purification, extraction, digestion, derivatization, synthesis, separation, detection with complementary techniques, data storage, or other steps. Therefore, we consider it helpful to define the "lab-on-a-plate" as a format for carrying out extensive sample treatment as well as bioassays directly on (MA)LDI target plates. This review introduces the lab-on-plate approach and illustrates it with the aid of relevant examples from the scientific and patent literature.
Collapse
Affiliation(s)
- Pawel L Urban
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Stolee JA, Vertes A. Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays. Phys Chem Chem Phys 2011; 13:9140-6. [DOI: 10.1039/c0cp02709j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Gulbakan B, Park D, Kang M, Kececi K, Martin CR, Powell DH, Tan W. Laser desorption ionization mass spectrometry on silicon nanowell arrays. Anal Chem 2010; 82:7566-75. [PMID: 20731384 PMCID: PMC2939284 DOI: 10.1021/ac101149b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper describes a new technique for fabrication of nanostructured porous silicon (pSi) for laser desorption ionization mass spectrometry. Porous silicon nanowell arrays were prepared by argon plasma etching through an alumina mask. Porous silicon prepared in this way proved to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS) using adenosine, Pro-Leu-Gly tripeptide, and [Des-Arg(9)]-bradykinin as the model compounds. It also allows the analyses of complex biological samples such as a tryptic digest of bovine serum albumin and a carnitine standard mixture. Nanowell array surfaces were also used for direct quantification of the illicit drug fentanyl in red blood cell extracts. This method also allows full control of the surface features. MS results suggested that the pore depth has a significant effect on the ion signals. Significant improvement in the ionization was observed by increasing the pore depth from 10 to 50 nm. These substrates are useful for laser desorption ionization in both the atmospheric pressure and vacuum regimes.
Collapse
Affiliation(s)
- Basri Gulbakan
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Suni NM, Haapala M, Färm E, Härkönen E, Ritala M, Sainiemi L, Franssila S, Kotiaho T, Kostiainen R. Fabrication of nanocluster silicon surface with electric discharge and the application in desorption/ionization on silicon-mass spectrometry. LAB ON A CHIP 2010; 10:1689-1695. [PMID: 20386863 DOI: 10.1039/b927181c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study presents a new, simple, and low-cost technique to fabricate a nanocluster silicon (NCSi) surface on planar silicon using a micro-scale direct current (DC) discharge under ambient conditions. The method requires no masks, chemicals, vacuum environment, or laser, but only a high-voltage supply. The NCSi surfaces, characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy, consist of oxidized silicon nanoclusters 50-200 nm in diameter, likely formed by melting due to high temperatures in the discharge. The minimum size of the NCSi spot is determined by the size of the discharge tip (approximately 90 microm). Arbitrary NCSi areas can be produced on a silicon wafer by moving the discharge needle on the surface with the help of a computer-controlled xyz stage. NCSi surfaces can also be formed on three-dimensional (3D) surfaces, as demonstrated with silicon micropillars. NCSi surfaces can be used, for example, in various analytical applications. In this study, we demonstrate their use as sample plates in the analysis of drugs and peptides with desorption/ionization on silicon-mass spectrometry (DIOS-MS).
Collapse
Affiliation(s)
- Niina M Suni
- Division of Pharmaceutical Chemistry, University of Helsinki, P. O. Box 56, FI-00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vidová V, Novák P, Strohalm M, Pól J, Havlíček V, Volný M. Laser Desorption-Ionization of Lipid Transfers: Tissue Mass Spectrometry Imaging without MALDI Matrix. Anal Chem 2010; 82:4994-7. [DOI: 10.1021/ac100661h] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Veronika Vidová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic, Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. 17.listopadu 12, CZ-771 46 Olomouc, Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, CZ-12840, Czech Republic
| | - Petr Novák
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic, Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. 17.listopadu 12, CZ-771 46 Olomouc, Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, CZ-12840, Czech Republic
| | - Martin Strohalm
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic, Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. 17.listopadu 12, CZ-771 46 Olomouc, Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, CZ-12840, Czech Republic
| | - Jaroslav Pól
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic, Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. 17.listopadu 12, CZ-771 46 Olomouc, Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, CZ-12840, Czech Republic
| | - Vladimír Havlíček
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic, Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. 17.listopadu 12, CZ-771 46 Olomouc, Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, CZ-12840, Czech Republic
| | - Michael Volný
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic, Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. 17.listopadu 12, CZ-771 46 Olomouc, Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, CZ-12840, Czech Republic
| |
Collapse
|
42
|
Zhu ZJ, Rotello VM, Vachet RW. Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst 2009; 134:2183-8. [PMID: 19838403 DOI: 10.1039/b910428c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Engineering of nanoparticle surface functionality provides controlled interactions with biomolecules such as cell membrane lipids, proteins and nucleic acids. Concurrently, this surface chemistry control also opens up new avenues for improving mass spectral analyses. In this Minireview, we highlight some of the emerging work that integrates surface-engineered nanoparticles with mass spectrometry to improve the analysis of a wide variety of chemical and biological systems.
Collapse
Affiliation(s)
- Zheng-Jiang Zhu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|