1
|
Spohr S, Fürstner A. Studies toward Providencin: The Furanyl-Cyclobutanol Segment. Org Lett 2023; 25:1536-1540. [PMID: 36847332 PMCID: PMC10012265 DOI: 10.1021/acs.orglett.3c00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 03/01/2023]
Abstract
The furanocembranoid providencin remains an unconquered bastion, although the synthesis of 17-deoxyprovidencin─lacking a single -OH group─has been accomplished in the past. This paper describes a practical approach to a properly hydroxylated building block via an iridium-catalyzed photosensitized intramolecular [2 + 2] cycloaddition as the key step. While an attempt to convert this compound into providencin via RCAM failed, it might well be elaborated into the natural product by adopting the literature route.
Collapse
Affiliation(s)
- Simon
M. Spohr
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
2
|
Zachmann R, Yahata K, Holzheimer M, Jarret M, Wirtz C, Fürstner A. Total Syntheses of Nominal and Actual Prorocentin. J Am Chem Soc 2023; 145:2584-2595. [PMID: 36652728 PMCID: PMC9896551 DOI: 10.1021/jacs.2c12529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dinoflagellate-derived polyether prorocentin is a co-metabolite of the archetypical serine/threonine phosphatase inhibitor okadaic acid. Whereas a structural relationship cannot be missed and a biosynthetic link was proposed, it is currently unknown whether there is any parallel in the bioactivity profile of these natural products. However, it was insinuated in the past that the structure assigned to prorocentin might need to be revised. Indeed, re-examination of the published spectra cast doubts as to the constitution of the fused/spirotricyclic BCD-ring system in the core. To clarify this issue, a flexible synthesis blueprint was devised that allowed us to obtain the originally proposed structure as well as the most plausible amended structure. The key to success was late-stage gold-catalyzed spirocyclization reactions that furnished the isomeric central segments with excellent selectivity. The lexicon of catalytic transformations used to make the required cyclization precursors comprised a titanium-mediated ester methylenation/metathesis cascade, a rare example of a gold-catalyzed allylic substitution, and chain extensions via organocatalytic asymmetric aldehyde propargylation. A wing sector to be attached to the isomeric cores was obtained by Krische allylation, followed by a superbly selective cobalt-catalyzed oxidative cyclization of the resulting di-unsaturated alcohol with the formation of a 2,5-trans-disubstituted tetrahydrofuran; the remaining terminal alkene was elaborated into an appropriate handle for fragment coupling by platinum-catalyzed asymmetric diboration/oxidation. The assembly of the different building blocks to the envisaged isomeric target compounds proved that the structure of prorocentin needs to be revised as disclosed herein.
Collapse
|
3
|
Dubey AK, Chowdhury R. Solvent-free synthesis of enantioenriched β-silyl nitroalkanes under organocatalytic conditions. Beilstein J Org Chem 2021; 17:2642-2649. [PMID: 34795801 PMCID: PMC8561140 DOI: 10.3762/bjoc.17.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
An enantioselective 1,4-conjugate addition of nitromethane to β-silyl α,β-unsaturated carbonyl compounds catalyzed by bifunctional squaramide catalysts has been developed. This methodology offers both enantiomers of β-silyl nitroalkanes in good to excellent yields (up to 92%) and enantioselectivities (up to 97.5% ee) under solvent-free conditions at room temperature. Control experiments reveal that the presence of a β-silyl group in the enones is crucial for high reactivity under the optimized reaction conditions.
Collapse
Affiliation(s)
- Akhil K Dubey
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
4
|
Cai L, Seiple IB, Li Q. Modular Chemical Synthesis of Streptogramin and Lankacidin Antibiotics. Acc Chem Res 2021; 54:1891-1908. [PMID: 33792282 DOI: 10.1021/acs.accounts.0c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continued, rapid development of antimicrobial resistance has become worldwide health crisis and a burden on the global economy. Decisive and comprehensive action is required to slow down the spread of antibiotic resistance, including increased investment in antibiotic discovery, sustainable policies that provide returns on investment for newly launched antibiotics, and public education to reduce the overusage of antibiotics, especially in livestock and agriculture. Without significant changes in the current antibiotic pipeline, we are in danger of entering a post-antibiotic era.In this Account, we summarize our recent efforts to develop next-generation streptogramin and lankacidin antibiotics that overcome bacterial resistance by means of modular chemical synthesis. First, we describe our highly modular, scalable route to four natural group A streptogramins antibiotics in 6-8 steps from seven simple chemical building blocks. We next describe the application of this route to the synthesis of a novel library of streptogramin antibiotics informed by in vitro and in vivo biological evaluation and high-resolution cryo-electron microscopy. One lead compound showed excellent inhibitory activity in vitro and in vivo against a longstanding streptogramin-resistance mechanism, virginiamycin acetyltransferase. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.Second, we recount our modular approaches toward lankacidin antibiotics. Lankacidins are a group of polyketide natural products with activity against several strains of Gram-positive bacteria but have not been deployed as therapeutics due to their chemical instability. We describe a route to several diastereomers of 2,18-seco-lankacidinol B in a linear sequence of ≤8 steps from simple building blocks, resulting in a revision of the C4 stereochemistry. We next detail our modular synthesis of several diastereoisomers of iso-lankacidinol that resulted in the structural reassignment of this natural product. These structural revisions raise interesting questions about the biosynthetic origin of lankacidins, all of which possessed uniform stereochemistry prior to these findings. Finally, we summarize the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro, providing important insights into structure-function relationships for the class.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, Jiangsu China
| | - Ian B. Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Qi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Abstract
Streptogramins are antibiotics produced by several species of Streptomyces bacteria that are used in both human and veterinary medicine. Group A streptogramins comprise 23-membered macrocyclic polyketide/nonribosomal peptide hybrids for which several innovative, fully synthetic routes have been developed. Herein we describe in detail our scalable routes to natural group A streptogramins and compare these routes to other reported syntheses.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Synthetic group A streptogramin antibiotics that overcome Vat resistance. Nature 2020; 586:145-150. [PMID: 32968273 PMCID: PMC7546582 DOI: 10.1038/s41586-020-2761-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2020] [Indexed: 11/08/2022]
Abstract
Natural products serve as chemical blueprints for the majority of antibiotics in our clinical arsenal. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class1. Virginiamycin acetyltransferases (Vats) are resistance proteins that provide protection against streptogramins2, potent Gram-positive antibiotics that inhibit the bacterial ribosome3. Due to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogs that overcome Vat resistance have not been previously accessed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with unprecedented structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogs to the bacterial ribosome at high resolution, revealing new binding interactions that extend into the peptidyl tRNA binding site and towards synergistic binders that occupy the nascent peptide exit tunnel (NPET). One of these analogs has excellent activity against several streptogramin-resistant strains of S. aureus, exhibits decreased acetylation rates in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.
Collapse
|
7
|
Cai B, Panek JS. Titanium Alkoxide-Based Regioselective Alkyne-Alkyne Reductive Coupling Mediated by In Situ Generated Arylamidate. J Am Chem Soc 2020; 142:3729-3735. [PMID: 32050069 DOI: 10.1021/jacs.0c00550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Titanium alkoxide-based alkyne-alkyne reductive coupling mediated by in situ generated arylamidate is described. A high level of regioselectivity is achieved in 37 examples, where (E,E)-dienes are exclusively formed. To the best of our knowledge, this study represents the first example of an apparent amide and carbamate directing effect in metal-mediated reductive coupling.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry, Metcalf Center for Science and Engineering , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - James S Panek
- Department of Chemistry, Metcalf Center for Science and Engineering , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
8
|
Abstract
Modular, fully synthetic routes to structurally complex natural products provide useful avenues to access chemical diversity. Herein we report a concise route to virginiamycin M2, a member of the group A streptogramin class of natural products that inhibits bacterial protein synthesis. Our approach features a longest linear sequence of six steps from 7 simple building blocks, and is the shortest and highest yielding synthesis of any member of the streptogramin class reported to date. We believe this route will enable access to unexplored structural diversity and may serve as a useful tool to improve the therapeutic potential of the streptogramin class of antibiotics.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmaceutical Chemistry and Cardiovascular Reseach Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Reseach Institute, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Solomin VV, Radchenko DS, Slobodyanyuk EY, Geraschenko OV, Vashchenko BV, Grygorenko OO. Widely Exploited, Yet Unreported: Regiocontrolled Synthesis and the Suzuki-Miyaura Reactions of Bromooxazole Building Blocks. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vitalii V. Solomin
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Taras Shevchenko National University of Kyiv; Ukraine
| | - Evgeniy Y. Slobodyanyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660; Ukraine
| | - Oleksandr V. Geraschenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Taras Shevchenko National University of Kyiv; Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine, Chervonotkatska Street 78, Kyiv; 02094 Ukraine
- Taras Shevchenko National University of Kyiv; Ukraine
| |
Collapse
|
10
|
Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep 2019; 36:1546-1575. [DOI: 10.1039/c8np00094h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review covers selected examples of point chirality-forming macrocyclizations in natural product total synthesis in the past three decades.
Collapse
Affiliation(s)
- Kuan Zheng
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Ran Hong
- Key Laboratory of Synthetic Chemistry of Natural Substances
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
11
|
Padarti A, Kim D, Han H. Highly Stereoselective 2-Oxonia-Cope Rearrangement: A Platform Enabling At-Will Control of Regio-, Enantio-, and Diastereoselectivity in the Vinylogous Aldol Reactions of Aldehydes. Org Lett 2018; 20:756-759. [PMID: 29345942 DOI: 10.1021/acs.orglett.7b03895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A distinctly different approach for the vinylogous aldolation of aldehydes is described, which exploits 2-oxonia-Cope rearrangement reactions between two readily available partners, a set of rationally designed chiral homoallylic alcohol synthons and aldehydes, under simple conditions. In these processes, chirality transfer from the former to the latter is nearly perfect, giving rise to excellent enantio- and diastereoselectivity without the regioselectivity issue associated with traditional vinylogous aldol reactions.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Chemistry, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Dongeun Kim
- Department of Chemistry, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| | - Hyunsoo Han
- Department of Chemistry, University of Texas at San Antonio , San Antonio, Texas 78249, United States
| |
Collapse
|
12
|
Kwon Y, Schulthoff S, Dao QM, Wirtz C, Fürstner A. Total Synthesis of Disciformycin A and B: Unusually Exigent Targets of Biological Significance. Chemistry 2017; 24:109-114. [DOI: 10.1002/chem.201705550] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | | | - Quang Minh Dao
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Germany
| |
Collapse
|
13
|
Li Q, Seiple IB. Modular, Scalable Synthesis of Group A Streptogramin Antibiotics. J Am Chem Soc 2017; 139:13304-13307. [DOI: 10.1021/jacs.7b08577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Li
- Department of Pharmaceutical
Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ian B. Seiple
- Department of Pharmaceutical
Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
14
|
A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 2017; 71:153-184. [DOI: 10.1038/ja.2017.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
|
15
|
O'Rourke NF, Kier MJ, Micalizio GC. Metallacycle-Mediated Cross-Coupling in Natural Product Synthesis. Tetrahedron 2016; 72:7093-7123. [PMID: 27765997 PMCID: PMC5067085 DOI: 10.1016/j.tet.2016.08.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Natasha F O'Rourke
- Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Matthew J Kier
- Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Glenn C Micalizio
- Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| |
Collapse
|
16
|
Cai B, Evans RW, Wu J, Panek JS. Total Synthesis of Nuclear Factor of Activated T-Cells-68 (NFAT-68): Sequential Use of Chiral Allenylsilane and Titanium Alkoxide-Mediated Reductive Coupling Bond Construction. Org Lett 2016; 18:4304-7. [PMID: 27513364 DOI: 10.1021/acs.orglett.6b02052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly enantioenriched chiral allenylsilanes 4 were prepared in high yield through a scalable synthetic sequence, employing a modified copper-catalyzed SN2' reaction. These reagents were used for the production of enantioenriched homoproparglylic ethers 5, which were subjected to titanium alkoxide-mediated reductive coupling with acetylenic esters to produce (E,E)-dienes 6 bearing α,β,γ,δ-unsaturated esters. Both enantiomers of nuclear factor of activated T-cells-68 (NFAT-68) were synthesized in five steps with the sequential use of the two methods.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ryan W Evans
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jie Wu
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - James S Panek
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
17
|
Cassidy JS, Mizoguchi H, Micalizio GC. Acceleration of metallacycle-mediated alkyne-alkyne cross-coupling with TMSCl. Tetrahedron Lett 2016; 57:3848-3850. [PMID: 27713588 DOI: 10.1016/j.tetlet.2016.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Investigation of titanium-centered metallacycle-mediated cross-coupling between unsymmetrical internal alkynes has led to the discovery that TMSCl significantly accelerates the C-C bond forming event. We report a collection of results that compare the efficiency of this reaction employing Ti(Oi-Pr)4/2n-BuLi in PhMe with and without TMSCl, demonstrating in every case that the presence of TMSCl has a profound impact on efficiency. While relevant in the context of developing this fundamental bond-forming process as an entry to more complex organometallic transformations, these modified reaction conditions allow coupling processes to be run at > 10 times the concentrations previously possible [in 2.4M n-BuLi (hexanes)], without the requirement of additional solvent. Finally, we demonstrate the effectiveness of these modified reaction conditions for the annulative cross-coupling between TMS-alkynes and 1,6-enynes leading to the formation of angularly substituted hydrindanes with, now well appreciated, high levels of regio- and stereoselection.
Collapse
Affiliation(s)
- James S Cassidy
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755
| | - Haruki Mizoguchi
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755
| | - Glenn C Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH 03755
| |
Collapse
|
18
|
Chen L, Ren Z, Zhou X, Zeng J, Zou J, Li Y. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Appl Microbiol Biotechnol 2015; 100:857-67. [PMID: 26526453 DOI: 10.1007/s00253-015-7092-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhi Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Endodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jumei Zeng
- Department of Structural Biology, Key Laboratory of Applied and Environmental Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Jing Zou
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
19
|
Rummelt SM, Preindl J, Sommer H, Fürstner A. Selective Formation of a Trisubstituted Alkene Motif bytrans-Hydrostannation/Stille Coupling: Application to the Total Synthesis and Late-Stage Modification of 5,6-Dihydrocineromycin B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501608] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Rummelt SM, Preindl J, Sommer H, Fürstner A. Selective Formation of a Trisubstituted Alkene Motif bytrans-Hydrostannation/Stille Coupling: Application to the Total Synthesis and Late-Stage Modification of 5,6-Dihydrocineromycin B. Angew Chem Int Ed Engl 2015; 54:6241-5. [DOI: 10.1002/anie.201501608] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/10/2015] [Indexed: 12/20/2022]
|
21
|
Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 2014; 53:8840-69. [PMID: 24990531 PMCID: PMC4536949 DOI: 10.1002/anie.201310843] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 01/13/2023]
Abstract
The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.
Collapse
Affiliation(s)
- Peter M. Wright
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Ian B. Seiple
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| |
Collapse
|
22
|
Wright PM, Seiple IB, Myers AG. Zur Rolle der chemischen Synthese in der Entwicklung antibakterieller Wirkstoffe. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310843] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Cross-Coupling Reactions Using Samarium(II) Iodide. Chem Rev 2014; 114:5959-6039. [DOI: 10.1021/cr400685r] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michal Szostak
- School
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Neal J. Fazakerley
- School
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Dixit Parmar
- School
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David J. Procter
- School
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
24
|
Kim D, Lee JS, Lozano L, Kong SB, Han H. Enantioenriched Bifunctional Crotylsilanes for the Asymmetric Synthesis of Orthogonally Protected 2-Methyl-1,3-diols. Org Lett 2013; 15:5142-5. [DOI: 10.1021/ol4026167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongeun Kim
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Jae Seung Lee
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Lucia Lozano
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Suk Bin Kong
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hyunsoo Han
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
25
|
Prusov EV. Total synthesis of antibiotics: recent achievements, limitations, and perspectives. Appl Microbiol Biotechnol 2013; 97:2773-95. [DOI: 10.1007/s00253-013-4757-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
26
|
|
27
|
Boobalan R, Chen C, Lee GH. Camphor-based Schiff base ligand SBAIB: an enantioselective catalyst for addition of phenylacetylene to aldehydes. Org Biomol Chem 2012; 10:1625-38. [DOI: 10.1039/c1ob06683h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wu J, Panek JS. Total synthesis of (-)-virginiamycin M2: application of crotylsilanes accessed by enantioselective Rh(II) or Cu(I) promoted carbenoid Si-H insertion. J Org Chem 2011; 76:9900-18. [PMID: 22070230 DOI: 10.1021/jo202119p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A stereoselective synthesis of the antibiotic (-)-virginiamycin M(2) is detailed. A convergent strategy was utilized that proceeded in 10 steps (longest linear sequence) from enantioenriched silane (S)-15. This reagent, which was prepared via a Rh(II)- or Cu(I)-catalyzed carbenoid Si-H insertion, was used to introduce the desired olefin geometry and stereocenters of the C1-C5 propionate subunit. A modified Negishi cross-coupling or an efficient alkoxide-directed titanium-mediated alkyne-alkyne reductive coupling strategy was utilized to assemble the trisubstituted (E,E)-diene. An underutilized late-stage SmI(2)-mediated macrocyclization was employed to construct the 23-membered macrocycle scaffold of the natural product.
Collapse
Affiliation(s)
- Jie Wu
- Department of Chemistry and Center for Chemical Methodology and Library Development, Metcalf Center for Science and Engineering, 590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
29
|
Jeso V, Cherry L, Macklin TK, Pan SC, LoGrasso PV, Micalizio GC. Convergent synthesis and discovery of a natural product-inspired paralog-selective Hsp90 inhibitor. Org Lett 2011; 13:5108-11. [PMID: 21866939 DOI: 10.1021/ol2019828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convergent synthesis of benzoquinone ansamycin analogs is described that proceeds by a sequence of metallacycle-mediated alkyne-alkyne coupling, followed by site- and stereoselective dihydroxylation and global carbamate formation. These studies have led to (1) validation of alkyne-alkyne coupling to produce geldanamycin analogs that lack the problematic quinone, (2) the discovery that C6-C7 bis-carbamate functionality is compatible with Hsp90 inhibition, and (3) the identification of 1 as a nonquinone geldanamycin-inspired paralog-selective Hsp90 inhibitor.
Collapse
Affiliation(s)
- Valer Jeso
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Xing Y, Zhang Q, O'Doherty GA. De novo synthesis of natural products via the asymmetric hydration of polyenes. Chem Commun (Camb) 2011; 47:8493-505. [PMID: 21559534 PMCID: PMC5815319 DOI: 10.1039/c1cc11791b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For the last ten years our group has been working toward the development of an asymmetric hydration approach to polyketide natural products based on the regioselective hydration of di- and tri-enoates. Key to the success of this approach is the recognition that both high regiocontrol and asymmetric induction could be obtained by the use of a Sharpless asymmetric dihydroxylation reaction. Herein we describe the development of the method and its application to natural product total synthesis.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
31
|
Sequential Transformations to Access Polycyclic Chemotypes: Asymmetric Crotylation and Metal Carbenoid Reactions. Angew Chem Int Ed Engl 2011; 50:5938-42. [DOI: 10.1002/anie.201101366] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Indexed: 01/07/2023]
|
32
|
Wu J, Becerril J, Lian Y, Davies HML, Porco JA, Panek JS. Sequential Transformations to Access Polycyclic Chemotypes: Asymmetric Crotylation and Metal Carbenoid Reactions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Nicolaou KC, Jiang X, Lindsay-Scott PJ, Corbu A, Yamashiro S, Bacconi A, Fowler VM. Total synthesis and biological evaluation of monorhizopodin and 16-epi-monorhizopodin. Angew Chem Int Ed Engl 2011; 50:1139-44. [PMID: 21268213 DOI: 10.1002/anie.201006780] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Indexed: 12/31/2022]
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Nicolaou KC, Jiang X, Lindsay-Scott PJ, Corbu A, Yamashiro S, Bacconi A, Fowler VM. Total Synthesis and Biological Evaluation of Monorhizopodin and 16-epi-Monorhizopodin. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|