1
|
Gentili PL, Stano P. Living cells and biological mechanisms as prototypes for developing chemical artificial intelligence. Biochem Biophys Res Commun 2024; 720:150060. [PMID: 38754164 DOI: 10.1016/j.bbrc.2024.150060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Vanag VK. Plasticity in networks of active chemical cells with pulse coupling. CHAOS (WOODBURY, N.Y.) 2022; 32:123108. [PMID: 36587337 DOI: 10.1063/5.0110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
A method for controlling the coupling strength is proposed for pulsed coupled active chemical micro-cells. The method is consistent with Hebb's rules. The effect of various system parameters on this "spike-timing-dependent plasticity" is studied. In addition to networks of two and three coupled active cells, the effect of this "plasticity" on the dynamic modes of a network of four pulse-coupled chemical micro-cells unidirectionally coupled in a circle is studied. It is shown that the proposed adjustment of the coupling strengths leads to spontaneous switching between network eigenmodes.
Collapse
Affiliation(s)
- Vladimir K Vanag
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad 236041, Russia
| |
Collapse
|
3
|
Design of a new photochromic oscillator: towards dynamical models of pacemaker neurons. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02122-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Mallphanov IL, Vanag VK. Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The results of studies on the development of micro-oscillators (MOs) based on the Belousov –Zhabotinsky (BZ) oscillatory chemical reaction are integrated and systematized. The mechanisms of the BZ reaction and the methods of immobilization of the catalyst of the BZ reaction in micro-volumes are briefly discussed. Methods for creating BZ MOs based on water microdroplets in the oil phase and organic and inorganic polymer microspheres are considered. Methods of control and management of the dynamics of BZ MO networks are described, including methods of MO synchronization. The prospects for the design of neural networks of MOs with intelligent-like behaviour are outlined. Such networks present a new area of nonlinear chemistry, including, in particular, the creation of a chemical ‘computer’.
The bibliography includes 250 references.
Collapse
|
5
|
Budroni MA, Pagano G, Conte D, Paternoster B, D'ambrosio R, Ristori S, Abou-Hassan A, Rossi F. Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators. Phys Chem Chem Phys 2021; 23:17606-17615. [PMID: 34369507 DOI: 10.1039/d1cp02221k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We study the impact of delayed feedbacks in the collective synchronization of ensembles of identical and autonomous micro-oscillators. To this aim, we consider linear arrays of Belousov-Zhabotinsky (BZ) oscillators confined in micro-compartmentalised systems, where the delayed feedback mimics natural lags that can arise due to the confinement properties and mechanisms driving the inter-oscillator communication. The micro-oscillator array is modeled as a set of Oregonator-like kinetics coupled via mass exchange of the chemical messengers. Changes in the synchronization patterns are explored by varying the delayed feedback introduced in the messenger species Br2. A direct transition from anti-phase to in-phase synchronization and back to the initial anti-phase scheme is observed by progressively increasing the time delay from zero to the value T0, which is the oscillation period characterising the system without any delayed coupling. The route from anti- to in-phase oscillations (and back) consists of regimes where windows of in-phase oscillations are periodically broken by anti-phase beats. Similarities between these phase transition dynamics and synchronization scenarios characterising the coordination of oscillatory limb movements are finally discussed.
Collapse
Affiliation(s)
- Marcello A Budroni
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Safonov DA, Vanag VK. Oscillatory microcells connected on a ring by chemical waves. CHAOS (WOODBURY, N.Y.) 2021; 31:063134. [PMID: 34241281 DOI: 10.1063/5.0046051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The dynamics of four coupled microcells with the oscillatory Belousov-Zhabotinsky (BZ) reaction in them is analyzed with the aid of partial differential equations. Identical BZ microcells are coupled in a circle via identical narrow channels containing all the components of the BZ reaction, which is in the stationary excitable state in the channels. Spikes in the BZ microcells generate unidirectional chemical waves in the channels. A thin filter is put in between the end of the channel and the cell. To make coupling between neighboring cells of the inhibitory type, hydrophobic filters are used, which let only Br2 molecules, the inhibitor of the BZ reaction, go through the filter. To simulate excitatory coupling, we use a hypothetical filter that let only HBrO2 molecules, the activator of the BZ reaction, go through it. New dynamic modes found in the described system are compared with the "old" dynamic modes found earlier in the analogous system of the "single point" BZ oscillators coupled in a circle by pulses with time delay. The "new" and "old" dynamic modes found for inhibitory coupling match well, the only difference being much broader regions of multi-rhythmicity in the "new" dynamic modes. For the excitatory type of coupling, in addition to four symmetrical modes of the "old" type, many new asymmetrical modes coexisting with the symmetrical ones have been found. Asymmetrical modes are characterized by the spikes occurring any time within some finite time intervals.
Collapse
Affiliation(s)
- Dmitry A Safonov
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad 236041, Russia
| | - Vladimir K Vanag
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad 236041, Russia
| |
Collapse
|
7
|
Zhou Y, Uddin W, Hu G. Kinetic identification of three metal ions by using a Briggs-Rauscher oscillating system. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Light and chemical oscillations: Review and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Sansuk S, Juntarakod P, Tongphoothorn W, Sirimungkala A, Somboon T. Visual chemo-chronometric assay for quantifying ethanol in alcoholic drinks by the colorimetric Belousov-Zhabotinsky oscillator. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Budroni MA, Torbensen K, Ristori S, Abou-Hassan A, Rossi F. Membrane Structure Drives Synchronization Patterns in Arrays of Diffusively Coupled Self-Oscillating Droplets. J Phys Chem Lett 2020; 11:2014-2020. [PMID: 32078774 DOI: 10.1021/acs.jpclett.0c00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Networks of diffusively coupled inorganic oscillators, confined in nano- and microcompartments, are effective for predicting and understanding the global dynamics of those systems where the diffusion of activatory or inhibitory signals regulates the communication among different individuals. By taking advantage of a microfluidic device, we study the dynamics of arrays of diffusively coupled Belousov-Zhabotinsky (BZ) oscillators encapsulated in water-in-oil single emulsions. New synchronization patterns are induced and controlled by modulating the structural and chemical properties of the phospholipid-based biomimetic membranes via the introduction of specific dopants. Doping molecules do not alter the membrane basic backbone, but modify the lamellarity (and, in turn, the permeability) or interact chemically with the reaction intermediates. A transition from two-period clusters showing 1:2 period-locking to one-period antiphase synchronization is observed by decreasing the membrane lamellarity. An unsynchronized scenario is found when the dopant is able to interfere with chemical communication by reacting with the chemical messengers.
Collapse
Affiliation(s)
- Marcello A Budroni
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - Kristian Torbensen
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Sandra Ristori
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - Federico Rossi
- Department of Physical Science, Earth and Environment, University of Siena, Pian dei Mantellini, 44 53100 Siena (SI), Italy
| |
Collapse
|
11
|
A contribution to neuromorphic engineering: neuromodulation implemented through photochromic compounds maintained out of equilibrium by UV–visible radiation. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00869-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Proskurkin IS, Smelov PS, Vanag VK. Experimental Investigation of the Dynamical Modes of Four Pulse‐Coupled Chemical Micro‐Oscillators. Chemphyschem 2019; 20:2162-2165. [DOI: 10.1002/cphc.201900421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/15/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ivan S. Proskurkin
- Centre for Nonlinear ChemistryImmanuel Kant Baltic Federal University Kaliningrad 236041 Russia
| | - Pavel S. Smelov
- Centre for Nonlinear ChemistryImmanuel Kant Baltic Federal University Kaliningrad 236041 Russia
| | - Vladimir K. Vanag
- Centre for Nonlinear ChemistryImmanuel Kant Baltic Federal University Kaliningrad 236041 Russia
| |
Collapse
|
13
|
Vanag VK. "Cognitive" modes in small networks of almost identical chemical oscillators with pulsatile inhibitory coupling. CHAOS (WOODBURY, N.Y.) 2019; 29:033106. [PMID: 30927858 DOI: 10.1063/1.5063322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The Lavrova-Vanag (LV) model of the periodical Belousov-Zhabotinsky (BZ) reaction has been investigated at pulsed self-perturbations, when a sharp spike of the BZ reaction induces a short inhibitory pulse that perturbs the BZ reaction after some time τ since each spike. The dynamics of this BZ system is strongly dependent on the amplitude Cinh of the perturbing pulses. At Cinh > Ccr, a new pseudo-steady state (SS) emerges far away from the limit cycle of the unperturbed BZ oscillator. The perturbed BZ system spends rather long time in the vicinity of this pseudo-SS, which serves as a trap for phase trajectories. As a result, the dynamics of the BZ system changes qualitatively. We observe new modes with packed spikes separated by either long "silent" dynamics or small-amplitude oscillations around pseudo-SS, depending on Cinh. Networks of two or three LV-BZ oscillators with strong pulsatile coupling and self-inhibition are able to generate so-called "cognitive" modes, which are very sensitive to small changes in Cinh. We demonstrate how the coupling between the BZ oscillators in these networks should be organized to find "cognitive" modes.
Collapse
Affiliation(s)
- Vladimir K Vanag
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Str., Kaliningrad 236041, Russia
| |
Collapse
|
14
|
Smelov PS, Proskurkin IS, Vanag VK. Controllable switching between stable modes in a small network of pulse-coupled chemical oscillators. Phys Chem Chem Phys 2019; 21:3033-3043. [DOI: 10.1039/c8cp07374k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switching between stable oscillatory modes in a network of four Belousov–Zhabotinsky oscillators unidirectionally coupled in a ring analysed computationally and experimentally.
Collapse
Affiliation(s)
- Pavel S. Smelov
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Ivan S. Proskurkin
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Vladimir K. Vanag
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| |
Collapse
|
15
|
Gentili PL. The Fuzziness of the Molecular World and Its Perspectives. Molecules 2018; 23:molecules23082074. [PMID: 30126225 PMCID: PMC6222855 DOI: 10.3390/molecules23082074] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 11/27/2022] Open
Abstract
Scientists want to comprehend and control complex systems. Their success depends on the ability to face also the challenges of the corresponding computational complexity. A promising research line is artificial intelligence (AI). In AI, fuzzy logic plays a significant role because it is a suitable model of the human capability to compute with words, which is relevant when we make decisions in complex situations. The concept of fuzzy set pervades the natural information systems (NISs), such as living cells, the immune and the nervous systems. This paper describes the fuzziness of the NISs, in particular of the human nervous system. Moreover, it traces three pathways to process fuzzy logic by molecules and their assemblies. The fuzziness of the molecular world is useful for the development of the chemical artificial intelligence (CAI). CAI will help to face the challenges that regard both the natural and the computational complexity.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
16
|
Identification of four isomers of Dihydroxynaphthalene by using a Briggs-Rauscher oscillating system. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Yengi D, Tinsley MR, Showalter K. Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators. CHAOS (WOODBURY, N.Y.) 2018; 28:045114. [PMID: 31906667 DOI: 10.1063/1.5018388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.
Collapse
Affiliation(s)
- Desmond Yengi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Mark R Tinsley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| |
Collapse
|
18
|
Horvath V, Epstein IR. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation. CHAOS (WOODBURY, N.Y.) 2018; 28:045108. [PMID: 31906644 DOI: 10.1063/1.5021585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.
Collapse
Affiliation(s)
- Viktor Horvath
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | - Irving R Epstein
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| |
Collapse
|
19
|
Kevrekidis YG, Kiss IZ, Kori H, Krischer K. Introduction to Focus Issue: In Memory of John L. Hudson: Self-Organized Structures in Chemical Systems. CHAOS (WOODBURY, N.Y.) 2018; 28:045001. [PMID: 31906653 DOI: 10.1063/1.5033452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Yannis G Kevrekidis
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, USA
| | - Hiroshi Kori
- Department of Information Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Katharina Krischer
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, D-85748 Garching, Germany
| |
Collapse
|
20
|
Vanag VK, Yasuk VO. Dynamic modes in a network of five oscillators with inhibitory all-to-all pulse coupling. CHAOS (WOODBURY, N.Y.) 2018; 28:033105. [PMID: 29604639 DOI: 10.1063/1.5004015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The dynamic modes of five almost identical oscillators with pulsatile inhibitory coupling with time delay have been studied theoretically. The models of the Belousov-Zhabotinsky reaction and phase oscillators with all-to-all coupling have been considered. In the parametric plane Cinh-τ, where Cinh is the coupling strength and τ is the time delay between a spike in one oscillator and pulsed perturbations of all other oscillators, three main regimes have been found: regular modes, when each oscillator gives only one spike during the global period T, C (complex) modes, when the number of pulses of different oscillators is different, and OS (oscillations-suppression) modes, when at least one oscillator is suppressed. The regular modes consist of several cluster modes and are found at relatively small Cinh. The C and OS modes observed at larger Cinh intertwine in the Cinh-τ plane. In a relatively narrow range of Cinh, the dynamics of the C modes are very sensitive to small changes in Cinh and τ, as well as to the initial conditions, which are the characteristic features of the chaos. On the other hand, the dynamics of the C modes are periodic (but with different periods) and well reproducible. The number of different C modes is enormously large. At still larger Cinh, the C modes lose sensitivity to small changes in the parameters and finally vanish, while the OS modes survive.
Collapse
Affiliation(s)
- Vladimir K Vanag
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad 236041, Russia
| | - Vitaly O Yasuk
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad 236041, Russia
| |
Collapse
|
21
|
Litschel T, Norton MM, Tserunyan V, Fraden S. Engineering reaction-diffusion networks with properties of neural tissue. LAB ON A CHIP 2018; 18:714-722. [PMID: 29297916 DOI: 10.1039/c7lc01187c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present an experimental system of networks of coupled non-linear chemical reactors, which we theoretically model within a reaction-diffusion framework. The networks consist of patterned arrays of diffusively coupled nanoliter-scale reactors containing the Belousov-Zhabotinsky (BZ) reaction. Microfluidic fabrication techniques are developed that provide the ability to vary the network topology and the reactor coupling strength and offer the freedom to choose whether an arbitrary reactor is inhibitory or excitatory coupled to its neighbor. This versatile experimental and theoretical framework can be used to create a wide variety of chemical networks. Here we design, construct and characterize chemical networks that achieve the complexity of central pattern generators (CPGs), which are found in the autonomic nervous system of a variety of organisms.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| | | | | | | |
Collapse
|
22
|
Proskurkin IS, Vanag VK. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback. Phys Chem Chem Phys 2018; 20:16126-16137. [DOI: 10.1039/c8cp02283f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have investigated the effect of global negative feedback (GNF) on the dynamics of a 1D array of water microdroplets (MDs) filled with the reagents of the photosensitive oscillatory Belousov–Zhabotinsky (BZ) reaction.
Collapse
Affiliation(s)
- Ivan S. Proskurkin
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Vladimir K. Vanag
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| |
Collapse
|
23
|
Safonov DA, Vanag VK. Dynamical modes of two almost identical chemical oscillators connected via both pulsatile and diffusive coupling. Phys Chem Chem Phys 2018; 20:11888-11898. [DOI: 10.1039/c7cp08032h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of two almost identical chemical oscillators with mixed diffusive and pulsatile coupling are systematically studied.
Collapse
Affiliation(s)
- Dmitry A. Safonov
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Vladimir K. Vanag
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| |
Collapse
|
24
|
Smelov PS, Vanag VK. A 'reader' unit of the chemical computer. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171495. [PMID: 29410852 PMCID: PMC5792929 DOI: 10.1098/rsos.171495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/28/2017] [Indexed: 05/03/2023]
Abstract
We suggest the main principals and functional units of the parallel chemical computer, namely, (i) a generator (which is a network of coupled oscillators) of oscillatory dynamic modes, (ii) a unit which is able to recognize these modes (a 'reader') and (iii) a decision-making unit, which analyses the current mode, compares it with the external signal and sends a command to the mode generator to switch it to the other dynamical regime. Three main methods of the functioning of the reader unit are suggested and tested computationally: (a) the polychronization method, which explores the differences between the phases of the generator oscillators; (b) the amplitude method which detects clusters of the generator and (c) the resonance method which is based on the resonances between the frequencies of the generator modes and the internal frequencies of the damped oscillations of the reader cells. Pro and contra of these methods have been analysed.
Collapse
|
25
|
Voorsluijs V, Kevrekidis IG, De Decker Y. Nonlinear behavior and fluctuation-induced dynamics in the photosensitive Belousov-Zhabotinsky reaction. Phys Chem Chem Phys 2017; 19:22528-22537. [PMID: 28809962 DOI: 10.1039/c7cp03260a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photosensitive Belousov-Zhabotinsky (pBZ) reaction has been used extensively to study the properties of chemical oscillators. In particular, recent experiments revealed the existence of complex spatiotemporal dynamics for systems consisting of coupled micelles (V < 10-21 L) or droplets (V ≈ [10-8-10-11] L) in which the pBZ reaction takes place. These results have been mostly understood in terms of reaction-diffusion models. However, in view of the small size of the droplets and micelles, large fluctuations of concentrations are to be expected. In this work, we investigate the role of fluctuations on the dynamics of a single droplet with stochastic simulations of an extension of the Field-Körös-Noyes (FKN) model taking into account the photosensitivity. The birhythmicity and chaotic behaviors predicted by the FKN model in the absence of fluctuations become transient or intermittent regimes whose lifetime decreases with the size of the droplet. Simple oscillations are more robust and can be observed even in small systems (V > 10-12 L), which justifies the use of deterministic models in microfluidic systems of coupled oscillators. The simulations also reveal that fluctuations strongly affect the efficiency of inhibition by light, which is often used to control the kinetics of these systems: oscillations are found for parameter values for which they are supposed to be quenched according to deterministic predictions.
Collapse
Affiliation(s)
- Valérie Voorsluijs
- Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université libre de Bruxelles (ULB), Campus Plaine, C.P. 231, B-1050 Brussels, Belgium.
| | | | | |
Collapse
|
26
|
Gentili PL, Giubila MS, Germani R, Romani A, Nicoziani A, Spalletti A, Heron BM. Optical Communication among Oscillatory Reactions and Photo-Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Via Elce di sotto 8 06123 Perugia Italy
| | - Maria Sole Giubila
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Via Elce di sotto 8 06123 Perugia Italy
| | - Raimondo Germani
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Via Elce di sotto 8 06123 Perugia Italy
| | - Aldo Romani
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Via Elce di sotto 8 06123 Perugia Italy
| | - Andrea Nicoziani
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Via Elce di sotto 8 06123 Perugia Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology; University of Perugia; Via Elce di sotto 8 06123 Perugia Italy
| | - B. Mark Heron
- Department of Chemical Sciences; School of Applied Science; University of Huddersfield, Queensgate; Huddersfield HD1 3DH UK
| |
Collapse
|
27
|
Gentili PL, Giubila MS, Germani R, Romani A, Nicoziani A, Spalletti A, Heron BM. Optical Communication among Oscillatory Reactions and Photo-Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models. Angew Chem Int Ed Engl 2017; 56:7535-7540. [PMID: 28560808 DOI: 10.1002/anie.201702289] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/27/2017] [Indexed: 11/08/2022]
Abstract
Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123, Perugia, Italy
| | - Maria Sole Giubila
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123, Perugia, Italy
| | - Raimondo Germani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123, Perugia, Italy
| | - Aldo Romani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123, Perugia, Italy
| | - Andrea Nicoziani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123, Perugia, Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123, Perugia, Italy
| | - B Mark Heron
- Department of Chemical Sciences, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|
28
|
Smelov PS, Vanag VK. Experimental investigation of a unidirectional network of four chemical oscillators pulse-coupled through an inhibitor. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2017. [DOI: 10.1134/s003602441706022x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Gentili PL, Giubila MS, Heron BM. Processing Binary and Fuzzy Logic by Chaotic Time Series Generated by a Hydrodynamic Photochemical Oscillator. Chemphyschem 2017; 18:1831-1841. [DOI: 10.1002/cphc.201601443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/02/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology and Biotechnology; University of Perugia; 06123 Perugia Italy
| | - Maria Sole Giubila
- Department of Chemistry, Biology and Biotechnology; University of Perugia; 06123 Perugia Italy
| | - B. Mark Heron
- Department of Chemical and Biological Sciences, School of Applied Science; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
30
|
Torbensen K, Rossi F, Ristori S, Abou-Hassan A. Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. LAB ON A CHIP 2017; 17:1179-1189. [PMID: 28239705 DOI: 10.1039/c6lc01583b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical communication leading to synchronization and collective behaviour of dynamic elements, such as cell colonies, is a widespread phenomenon with biological, physical and chemical importance. Such synchronization between elements proceeds via chemical communication by emmision, interdiffusion and reception of specific messenger molecules. On a lab scale, these phenomena can be modeled by encapsulating an oscillating chemical reaction, which serves as a signal (information) sender/receiver element, inside microcompartments such as droplet emulsions, liposomes and polymersomes. Droplets can thus be regarded as single units, able to generate chemical messengers that diffuse in the environment and hence can interact with other compartments. The Belousov-Zhabotinsky (BZ) reaction is a well-known chemical oscillator largely used as a model for complex nonlinear phenomena, including chemical, physical and biological examples. When the BZ-reaction is encapsulated inside microcompartments, its chemical intermediates can serve as messengers by diffusing among different microcompartments, to trigger specific reactions leading to a collective behavior between the elements. The geometry and constitution of the diffusion pathways play an important role in governing the collective behaviour of the system. In this context, microfluidics is not only a versatile tool for mastering the encapsulation process of the BZ-reaction in monodisperse microcompartments, but also for creating geometries and networks with well defined boundaries. The individual compartments can be engineered with selected properties using different surfactants in the case of simple emulsions, or with specific membrane properties in the case of liposomes. Furthermore, it enables the arrangement of these microcompartments in various geometric configurations, where the diffusive coupling pathways between individual compartments are both spatially and chemically well-defined. In this tutorial paper, we review a number of articles reporting various approaches to generate networks of compartmentalized Belousov-Zhabotinsky (BZ) chemical oscillators using microfluidics. In contrast to biological cellular networks, the dynamical characteristics of the BZ-reaction is well-known and, when confined in microcompartments arranged in different configurations with a pure interdiffusive coupling, these communicative microreactors can serve to mimic various types of bio-physical networks, aiding to comprehend the concept of chemical communication.
Collapse
Affiliation(s)
- Kristian Torbensen
- UMR 8234, Laboratoire Physico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), UPMC Univ Paris 06, Sorbonne Universités, 4 place Jussieu - case 51, 75252 Paris cedex 05, France.
| | - Federico Rossi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA), Italy
| | - Sandra Ristori
- Department of Earth Sciences & CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Ali Abou-Hassan
- UMR 8234, Laboratoire Physico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), UPMC Univ Paris 06, Sorbonne Universités, 4 place Jussieu - case 51, 75252 Paris cedex 05, France.
| |
Collapse
|
31
|
Safonov DA, Klinshov VV, Vanag VK. Dynamical regimes of four oscillators with excitatory pulse coupling. Phys Chem Chem Phys 2017; 19:12490-12501. [DOI: 10.1039/c7cp01177f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamics of four almost identical chemical oscillators pulse coupled via excitatory coupling with time delays are systematically studied.
Collapse
Affiliation(s)
- Dmitry A. Safonov
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Vladimir V. Klinshov
- Institute of Applied Physics of the Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Vladimir K. Vanag
- Centre for Nonlinear Chemistry
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| |
Collapse
|
32
|
Nagao R, Zou W, Kurths J, Kiss IZ. Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations. CHAOS (WOODBURY, N.Y.) 2016; 26:094808. [PMID: 27781452 DOI: 10.1063/1.4954040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The dynamical behavior of delay-coupled networks of electrochemical reactions is investigated to explore the formation of amplitude death (AD) and the synchronization states in a parameter region around the amplitude death region. It is shown that difference coupling with odd and even numbered ring and random networks can produce the AD phenomenon. Furthermore, this AD can be restored by changing the coupling type from difference to direct coupling. The restored oscillations tend to create synchronization patterns in which neighboring elements are in nearly anti-phase configuration. The ring networks produce frozen and rotating phase waves, while the random network exhibits a complex synchronization pattern with interwoven frozen and propagating phase waves. The experimental results are interpreted with a coupled Stuart-Landau oscillator model. The experimental and theoretical results reveal that AD behavior is a robust feature of delayed coupled networks of chemical units; if an oscillatory behavior is required again, even a small amount of direct coupling could be sufficient to restore the oscillations. The restored nearly anti-phase oscillatory patterns, which, to a certain extent, reflect the symmetry of the network, represent an effective means to overcome the AD phenomenon.
Collapse
Affiliation(s)
- Raphael Nagao
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, USA
| | - Wei Zou
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D-14415, Germany
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, USA
| |
Collapse
|
33
|
Ghoshal G, Muñuzuri AP, Pérez-Mercader J. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators. Sci Rep 2016; 6:19186. [PMID: 26753772 PMCID: PMC4709686 DOI: 10.1038/srep19186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022] Open
Abstract
Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.
Collapse
Affiliation(s)
- Gourab Ghoshal
- Department of Earth and Planetary Sciences. Harvard University, Cambridge, MA 02138, USA
| | - Alberto P. Muñuzuri
- Department of Earth and Planetary Sciences. Harvard University, Cambridge, MA 02138, USA
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences. Harvard University, Cambridge, MA 02138, USA
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
34
|
Vanag VK, Smelov PS, Klinshov VV. Dynamical regimes of four almost identical chemical oscillators coupled via pulse inhibitory coupling with time delay. Phys Chem Chem Phys 2016; 18:5509-20. [DOI: 10.1039/c5cp06883e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dynamics of four almost identical pulse coupled chemical oscillators with time delay are systematically studied.
Collapse
Affiliation(s)
- Vladimir K. Vanag
- Centre for Nonlinear Chemistry
- Chemical-Biological Institute
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Pavel S. Smelov
- Centre for Nonlinear Chemistry
- Chemical-Biological Institute
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Vladimir V. Klinshov
- Institute of Applied Physics of the Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| |
Collapse
|
35
|
Zhang Y, Hu G, Hu L, Song J. Identification of two aliphatic position isomers between α- and β-ketoglutaric acid by using a Briggs-Rauscher oscillating system. Anal Chem 2015; 87:10040-6. [PMID: 26322368 DOI: 10.1021/acs.analchem.5b02649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports a novel method for identification of two aliphatic position isomers between α-ketoglutaric acid (α-KA) and β-ketoglutaric acid (β-KA) by their different perturbation effects on a Briggs-Rauscher oscillating system, in which tetraaza-macrocyclic complex [NiL](ClO4)2 is used as the catalyst. The ligand L in the complex is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The experimental results have shown that addition of α-KA into the system does not affect the oscillating patterns, while the presence of β-KA in a dynamic system influences the oscillatory amplitude. A more interesting feature is that, in the presence of a higher concentration of β-KA, there are damped oscillations after the initial spike, followed by quenching (more exactly: very small oscillations) of the oscillations before the subsequent regeneration of oscillations. A qualitative approach was thus established by employing a Briggs-Rauscher system for identification of these two isomers. The concentrations of these two isomers that can be distinguished lie over the range between 5.0 × 10(-6) and 2.5 × 10(-3) mol/L. A reaction mechanism based on the FCA model has been proposed. An explanation is that β-KA reacts with HOO(•) radicals to form acetone, whereas the α-KA does not.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry, Anhui University , Hefei, 230601, People's Republic of China
| | - Gang Hu
- Department of Chemistry, Anhui University , Hefei, 230601, People's Republic of China
| | - Lin Hu
- Institute of Applied Chemistry, East China Jiaotong University , Nanchang, 330013, People's Republic of China
| | - Jimei Song
- Department of Chemistry, Anhui University , Hefei, 230601, People's Republic of China
| |
Collapse
|
36
|
Showalter K, Epstein IR. From chemical systems to systems chemistry: Patterns in space and time. CHAOS (WOODBURY, N.Y.) 2015; 25:097613. [PMID: 26428566 DOI: 10.1063/1.4918601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a brief, idiosyncratic overview of the past quarter century of progress in nonlinear chemical dynamics and discuss what we view as the most exciting recent developments and some challenges and likely areas of progress in the next 25 years.
Collapse
Affiliation(s)
- Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Irving R Epstein
- Department of Chemistry and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| |
Collapse
|
37
|
Totz JF, Snari R, Yengi D, Tinsley MR, Engel H, Showalter K. Phase-lag synchronization in networks of coupled chemical oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022819. [PMID: 26382466 DOI: 10.1103/physreve.92.022819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 06/05/2023]
Abstract
Chemical oscillators with a broad frequency distribution are photochemically coupled in network topologies. Experiments and simulations show that the network synchronization occurs by phase-lag synchronization of clusters of oscillators with zero- or nearly zero-lag synchronization. Symmetry also plays a role in the synchronization, the extent of which is explored as a function of coupling strength, frequency distribution, and the highest frequency oscillator location. The phase-lag synchronization occurs through connected synchronized clusters, with the highest frequency node or nodes setting the frequency of the entire network. The synchronized clusters successively "fire," with a constant phase difference between them. For low heterogeneity and high coupling strength, the synchronized clusters are made up of one or more clusters of nodes with the same permutation symmetries. As heterogeneity is increased or coupling strength decreased, the phase-lag synchronization occurs partially through clusters of nodes sharing the same permutation symmetries. As heterogeneity is further increased or coupling strength decreased, partial synchronization and, finally, independent unsynchronized oscillations are observed. The relationships between these classes of behavior are explored with numerical simulations, which agree well with the experimentally observed behavior.
Collapse
Affiliation(s)
- Jan F Totz
- Institut für Theoretische Physik, EW 7-1, TU Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Razan Snari
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505-6045, USA
| | - Desmond Yengi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505-6045, USA
| | - Mark R Tinsley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505-6045, USA
| | - Harald Engel
- Institut für Theoretische Physik, EW 7-1, TU Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505-6045, USA
| |
Collapse
|
38
|
Torbensen K, Rossi F, Pantani OL, Ristori S, Abou-Hassan A. Interaction of the Belousov–Zhabotinsky Reaction with Phospholipid Engineered Membranes. J Phys Chem B 2015; 119:10224-30. [DOI: 10.1021/acs.jpcb.5b04572] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kristian Torbensen
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 place Jussieu, F-75005 Paris, France
| | - Federico Rossi
- Department
of Chemistry and Biology, University of Salerno, Via Giovanni
Paolo II 132, Fisciano (SA), Italy
| | - Ottorino L. Pantani
- Department
of Agrifood Production and Environmental Sciences, University of Florence, P.le delle Cascine 28, 50144 Firenze, Italy
| | - Sandra Ristori
- Department of Earth Sciences & CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Ali Abou-Hassan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
39
|
Proskurkin IS, Lavrova AI, Vanag VK. Inhibitory and excitatory pulse coupling of two frequency-different chemical oscillators with time delay. CHAOS (WOODBURY, N.Y.) 2015; 25:064601. [PMID: 26117126 DOI: 10.1063/1.4921168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dynamical regimes of two pulse coupled non-identical Belousov-Zhabotinsky oscillators have been studied experimentally as well as theoretically with the aid of ordinary differential equations and phase response curves both for pure inhibitory and pure excitatory coupling. Time delay τ between a spike in one oscillator and perturbing pulse in the other oscillator plays a significant role for the phase relations of synchronous regimes of the 1:1 and 1:2 resonances. Birhythmicity between anti-phase and in-phase oscillations for inhibitory pulse coupling as well as between 1:2 and 1:1 resonances for excitatory pulse coupling have also been found. Depending on the ratio of native periods of oscillations T2/T1, coupling strength, and time delay τ, such resonances as 1:1 (with different phase locking), 2:3, 1:2, 2:5, 1:3, 1:4, as well as complex oscillations and oscillatory death are observed.
Collapse
Affiliation(s)
- Ivan S Proskurkin
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, A. Nevskogo str. 14A, Kaliningrad 236041, Russia
| | - Anastasia I Lavrova
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, A. Nevskogo str. 14A, Kaliningrad 236041, Russia
| | - Vladimir K Vanag
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, A. Nevskogo str. 14A, Kaliningrad 236041, Russia
| |
Collapse
|
40
|
Kiss IZ, Pojman JA. Introduction to Focus Issue: Oscillations and Dynamic Instabilities in Chemical Systems: Dedicated to Irving R. Epstein on occasion of his 70th birthday. CHAOS (WOODBURY, N.Y.) 2015; 25:064201. [PMID: 26117111 DOI: 10.1063/1.4922594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- István Z Kiss
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
41
|
Español MI, Rotstein HG. Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model. CHAOS (WOODBURY, N.Y.) 2015; 25:064612. [PMID: 26117137 DOI: 10.1063/1.4922715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Oregonator is the simplest chemically plausible model for the Belousov-Zhabotinsky reaction. We investigate the response of the Oregonator to sinusoidal inputs with amplitudes and frequencies within plausible ranges. We focus on a regime where the unforced Oregonator is excitable (with no sustained oscillations). We use numerical simulations and dynamical systems tools to both characterize the response patterns and explain the underlying dynamic mechanisms.
Collapse
Affiliation(s)
- Malena I Español
- Department of Mathematics, The University of Akron, Akron, Ohio 44325, USA
| | - Horacio G Rotstein
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
42
|
Horvath V, Kutner DJ, Chavis III JT, Epstein IR. Pulse-coupled BZ oscillators with unequal coupling strengths. Phys Chem Chem Phys 2015; 17:4664-76. [DOI: 10.1039/c4cp05416d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A host of asymptotically stable, temporally periodic patterns are found when chemical oscillators are pulse coupled,e.g., the 1 : 2 and 1 : D–N type patterns shown here.
Collapse
|
43
|
Proskurkin IS, Vanag VK. New type of excitatory pulse coupling of chemical oscillators via inhibitor. Phys Chem Chem Phys 2015; 17:17906-13. [DOI: 10.1039/c5cp02098k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of excitatory pulse coupling of two chemical oscillators via a short interruption of inhibitor inflow is introduced.
Collapse
Affiliation(s)
- Ivan S. Proskurkin
- Centre for Nonlinear Chemistry
- Chemical-Biological Institute
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| | - Vladimir K. Vanag
- Centre for Nonlinear Chemistry
- Chemical-Biological Institute
- Immanuel Kant Baltic Federal University
- Kaliningrad
- Russia
| |
Collapse
|
44
|
Proskurkin IS, Vanag VK. Dynamical regimes of two frequency different chemical oscillators coupled via pulse inhibitory coupling with time delay. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024415020223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Klinshov VV, Shchapin DS, Nekorkin VI. Cross-frequency synchronization of oscillators with time-delayed coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042923. [PMID: 25375583 DOI: 10.1103/physreve.90.042923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 06/04/2023]
Abstract
We carry out theoretical and experimental studies of cross-frequency synchronization of two pulse oscillators with time-delayed coupling. In the theoretical part of the paper we utilize the concept of phase resetting curves and analyze the system dynamics in the case of weak coupling. We construct a Poincaré map and obtain the synchronization zones in the parameter space for m:n synchronization. To challenge the theoretical results we designed an electronic circuit implementing the coupled oscillators and studied its dynamics experimentally. We show that the developed theory predicts dynamical properties of the realistic system, including location of the synchronization zones and bifurcations inside them.
Collapse
Affiliation(s)
- Vladimir V Klinshov
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul'yanov Street, 603950, Nizhny Novgorod, Russia and University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950, Nizhny Novgorod, Russia
| | - Dmitry S Shchapin
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul'yanov Street, 603950, Nizhny Novgorod, Russia and University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950, Nizhny Novgorod, Russia
| | - Vladimir I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul'yanov Street, 603950, Nizhny Novgorod, Russia and University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
46
|
Ke H, Tinsley MR, Steele A, Wang F, Showalter K. Link weight evolution in a network of coupled chemical oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052712. [PMID: 25353834 DOI: 10.1103/physreve.89.052712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 05/17/2023]
Abstract
Link weight evolution is studied in a network of coupled chemical oscillators. Oscillators are perturbed by adjustments in imposed light intensity based on excitatory or inhibitory links to other oscillators undergoing excitation. Experimental and modeling studies demonstrate that the network is capable of producing sustained coordinated activity. The individual nodes of the network exhibit incoherent firing events; however, a dominant frequency can be discerned within the collective signal by Fourier analysis. The introduction of spike-timing-dependent plasticity yields a network that evolves to a stable unimodal link weight distribution.
Collapse
Affiliation(s)
- Hua Ke
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Mark R Tinsley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Aaron Steele
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Fang Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| |
Collapse
|
47
|
Tomasi R, Noël JM, Zenati A, Ristori S, Rossi F, Cabuil V, Kanoufi F, Abou-Hassan A. Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem Sci 2014. [DOI: 10.1039/c3sc53227e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical measurements and numerical simulations are employed to understand the chemical communication between liposomes prepared in microfluidics and encapsulating a chemical oscillator.
Collapse
Affiliation(s)
- Raphaël Tomasi
- UPMC Univ Paris 6
- PECSA
- UMR 7195
- équipe Colloïdes Inorganiques
- Université Paris 6 (UPMC) Bat F(74)
| | - Jean-Marc Noël
- ESPCI ParisTech
- PECSA
- UMR 7195
- F-75231 Paris Cedex 05, France
| | - Aymen Zenati
- UPMC Univ Paris 6
- PECSA
- UMR 7195
- équipe Colloïdes Inorganiques
- Université Paris 6 (UPMC) Bat F(74)
| | | | - Federico Rossi
- Department of Chemistry and Biology
- University of Salerno
- Fisciano (SA), Italy
| | - Valérie Cabuil
- UPMC Univ Paris 6
- PECSA
- UMR 7195
- équipe Colloïdes Inorganiques
- Université Paris 6 (UPMC) Bat F(74)
| | | | - Ali Abou-Hassan
- UPMC Univ Paris 6
- PECSA
- UMR 7195
- équipe Colloïdes Inorganiques
- Université Paris 6 (UPMC) Bat F(74)
| |
Collapse
|
48
|
Epstein IR. Coupled chemical oscillators and emergent system properties. Chem Commun (Camb) 2014; 50:10758-67. [DOI: 10.1039/c4cc00290c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We review recent work on a variety of systems, from the nanometre to the centimetre scale, including microemulsions, microfluidic droplet arrays, gels and flow reactors, in which chemical oscillators interact to generate novel spatiotemporal patterns and/or mechanical motion.
Collapse
Affiliation(s)
- Irving R. Epstein
- Department of Chemistry and Volen National Center for Complex Systems
- MS 015
- Brandeis University
- Waltham, USA
| |
Collapse
|
49
|
Lavrova AI, Vanag VK. Two pulse-coupled non-identical, frequency-different BZ oscillators with time delay. Phys Chem Chem Phys 2014; 16:6764-72. [DOI: 10.1039/c3cp54373k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Anastasia I Lavrova
- Immanuel Kant Baltic Federal University, A.Nevskogo str. 14A, Kaliningrad, 236041, Russia.
| | | |
Collapse
|
50
|
Stano P, Wodlei F, Carrara P, Ristori S, Marchettini N, Rossi F. Approaches to Molecular Communication Between Synthetic Compartments Based on Encapsulated Chemical Oscillators. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2014. [DOI: 10.1007/978-3-319-12745-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|