1
|
Beteinakis S, Mikropoulou EV, Michailidis D, Angelis A, Haack M, Ringel M, Brück T, Brück DW, Renault JH, Skaltsounis AL, Lameiras P, Halabalaki M. Unlocking the Potential of Water-Insoluble Natural Polymers: Isolation, Characterization, and 2D NMR Quantification of cis-1,4-Poly-β-myrcene in Chios Mastic Gum. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40228101 DOI: 10.1021/acs.jnatprod.5c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Natural polymers have garnered attention due to their unique properties, i.e., structural versatility, biocompatibility, and modifiability. Recent efforts focus on sustainable raw materials to develop environmentally friendly processes and products that align with global sustainability goals. Among these, Chios mastic gum, derived from the mastic tree (Pistacia lentiscus var. Chia), is notable for its diverse food, pharmaceutical, and cosmetics applications. One of its key components is cis-1,4-poly-β-myrcene, a natural polyterpene polymer, constituting 20-30% of the resin's composition. Despite its potential, the complex composition of Chios mastic gum poses challenges in extracting, isolating, and quantifying its polymeric content. NMR spectroscopy offers a nondestructive approach and may be instrumental in developing standardized methods for quantifying cis-1,4-poly-β-myrcene in Chios mastic gum. Such methods are vital for understanding the resin's composition and exploring potential applications, particularly in sustainable materials and biomedical fields. This study addresses these challenges by producing a cis-1,4-poly-β-myrcene sample as a standard in quantification procedures. Centrifugal partition chromatography, a support-free liquid-liquid chromatography technique, was employed to purify the polymeric fraction. The polymer was then characterized through size exclusion chromatography and NMR methods, including DOSY and quantitative HSQC experiments, to facilitate an accurate analysis and open the door to further applications of this natural polymer.
Collapse
Affiliation(s)
- Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Eleni V Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | | | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Martina Haack
- Werner Siemens─Chair of Synthetic Biotechnology, Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Marion Ringel
- Werner Siemens─Chair of Synthetic Biotechnology, Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Thomas Brück
- Werner Siemens─Chair of Synthetic Biotechnology, Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Dieter W Brück
- Werner Siemens─Chair of Synthetic Biotechnology, Department of Chemistry, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | | | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Pedro Lameiras
- University of Reims Champagne-Ardenne, ICMR 7312, 51687 Reims, France
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| |
Collapse
|
2
|
Shi X, Zhu W, Zeng Q, Luo Y, Chen Z, Lin Y. Selective-excitation-based method for measurement of NMR relaxation time. Anal Chim Acta 2025; 1335:343465. [PMID: 39643316 DOI: 10.1016/j.aca.2024.343465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Relaxation time provides invaluable insights into the molecular structure, interactions, and dynamics in nuclear magnetic resonance spectroscopy. However, conventional relaxation-time measurement techniques produce inaccurate relaxation times when the spectral peaks overlap because of the narrow chemical-shift range and J-coupled splitting. While the combination of pure-shift methods can solve this issue, they are not widely used due to their inherent drawbacks such as low sensitivity and long acquisition time. There is a great need for a feasible and sensitive method to measure the relaxation time for overlapping peaks. (87). RESULTS This study proposes a new method that combines selective excitation with a conventional relaxation-time measurement method, named GEM-IR/CPMG, to accurately measure the longitudinal and transverse relaxation times in the samples with overlapping peaks. The method has a similar acquisition time as the conventional method with small sensitivity loss. The feasibility and effectiveness of the method were demonstrated through experiments using three types of samples: 1-bromobutane, a mixture of butanol and butyric acid, and 17β-estradiol. The results show that the relaxation times measured by this method are in general agreement with the results of the conventional method. In addition, to demonstrate the advantages of the method for low-concentration samples, a sample of estradiol at 8 mM was measured with the results obtained matching the high concentration. (125). SIGNIFICANCE The GEM-IR/CPMG method eliminates interference from overlapping peaks in proton relaxation-time measurement and preserves the crucial coupling information of the sample, thus allowing accurate measurement of the relaxation time. Moreover, it selectively excites the spin of interest in a single scan, demonstrating a minor loss of spectral sensitivity and facilitating the measurement of low-concentration samples, making it widely applicable to chemical analyses. (62).
Collapse
Affiliation(s)
- Xiaoqi Shi
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Wen Zhu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qing Zeng
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yao Luo
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
3
|
Bazzoni M, Régheasse A, Caytan E, Felpin F, Giraudeau P, Bernard A, Adams RW, Morris GA, Nilsson M, Dumez J. Pure Shift NMR in Continuous Flow. Chemistry 2025; 31:e202403385. [PMID: 39431476 PMCID: PMC11711295 DOI: 10.1002/chem.202403385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Flow NMR is an expanding analytical approach with applications that include in-line analysis for process control and optimisation, and real-time reaction monitoring. The samples monitored by flow NMR are typically mixtures that yield complex 1D 1H spectra. "Pure shift" NMR is a powerful approach to simplifying 1H NMR spectra, but its standard implementation is not compatible with continuous flow because of interference between sample motion and the position-dependent spin manipulations that are required in pure shift NMR. Here we show that pure shift NMR spectra can be successfully collected for continuously flowing samples, thanks to an adapted acquisition scheme, robust solvent suppression, and a velocity-compensation strategy. The resulting method is used to collect ultrahigh resolution reaction monitoring data. Pure shift NMR spectra are expected to benefit many applications of flow NMR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ralph W. Adams
- Department of ChemistryUniversity of ManchesterManchesterUK
| | | | | | | |
Collapse
|
4
|
Yang Z, Cai W, Zhu W, Zheng X, Shi X, Qiu M, Chen Z, Liu M, Lin Y. Deep learning enabled ultra-high quality NMR chemical shift resolved spectra. Chem Sci 2024; 15:20039-20044. [PMID: 39568866 PMCID: PMC11575604 DOI: 10.1039/d4sc04742g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
High quality chemical shift resolved spectra have long been pursued in nuclear magnetic resonance (NMR). In order to obtain chemical shift information with high resolution and sensitivity, a neural network named spin echo to obtain chemical shifts network (SE2CSNet) is developed to process the NMR data acquired by the spin echo pulse sequence. Through detecting the change of phase in the spin echo spectra, SE2CSNet can accurately detect the chemical shift position of spectral signals. The results show that the network can discern the chemical shift even when spectral signals overlap, but without strong coupling and chunking artifacts. In addition, this method can process the sample with low S/N (signal to noise ratio), and recover weak signals even hidden in noise, leading to ultra-high quality chemical shift resolved spectra. It is envisioned that the proposed methodology will find wide applications in many fields.
Collapse
Affiliation(s)
- Zhengxian Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Weigang Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Wen Zhu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Xiaoxu Zheng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Xiaoqi Shi
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Mengjie Qiu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
5
|
Huang T, Chai X, Li S, Liu B, Zhan J, Wang X, Xiao X, Zhu Q, Liu C, Zeng D, Jiang B, Zhou X, He L, Gong Z, Liu M, Zhang X. Rapid Targeted Screening and Identification of Active Ingredients in Herbal Extracts through Ligand-Detected NMR and Database Matching. Anal Chem 2024. [PMID: 39263786 DOI: 10.1021/acs.analchem.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Herbal extracts are rich sources of active compounds that can be used for drug screening due to their diverse and unique chemical structures. However, traditional methods for screening these compounds are notably laborious and time-consuming. In this manuscript, we introduce a new high-throughput approach that combines nuclear magnetic resonance (NMR) spectroscopy with a tailored database and algorithm to rapidly identify bioactive components in herbal extracts. This method distinguishes characteristic signals and structural motifs of active constituents in the raw extracts through a relaxation-weighted technique, particularly utilizing the perfect echo Carr-Purcell-Meiboom-Gill (peCPMG) sequence, complemented by precise 2D spectroscopic strategies. The cornerstone of our approach is a customized database designed to filter potential compounds based on defined parameters, such as the presence of CHn segments and unique chemical shifts, thereby expediting the identification of promising compounds. This innovative technique was applied to identifying substances interacting with choline kinase α (ChoKα1), resulting in the discovery of four new inhibitors. Our findings demonstrate a powerful tool for unraveling the complex chemical landscape of herbal extracts, considerably facilitating the search for new pharmaceutical candidates. This approach offers an efficient alternative to traditional methods in the quest for drug discovery from natural sources.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuangli Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biao Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Jianhua Zhan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaohua Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiong Xiao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinjun Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyun Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
6
|
Zhan H, Liu J, Fang Q, Huang Y, Chen X, Ni Y, Zhou L, Chen Z. Combining Fast Pure Shift NMR and GEMSTONE-Based Selective TOCSY for Efficient NMR Analysis of Complex Systems. Anal Chem 2024; 96:13742-13748. [PMID: 39115999 DOI: 10.1021/acs.analchem.4c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
As one of the commonly used intact detection techniques, liquid NMR spectroscopy offers unparalleled insights into the chemical environments, structures, and dynamics of molecules. However, it generally encounters the challenges of crowded or even overlapped spectra, especially when probing complex sample systems containing numerous components and complicated molecular structures. Herein, we exploit a general NMR protocol for efficient NMR analysis of complex systems by combining fast pure shift NMR and GEMSTONE-based selective TOCSY. First, this protocol enables ultrahigh-selective observation on the coupling networks that are totally correlated with targeted resonances or components, even where they are situated in severely overlapped spectral regions. Second, pure shift simplification is introduced to enhance the spectral resolution and further resolve the subspectra containing spectral congestion, thus facilitating the dissection of overlapped spectra. Additionally, sparse sampling accompanied by spectral reconstruction is adopted to significantly accelerate acquisition and improve spectral quality. The advantages of this protocol were demonstrated on different complex sample systems, including a challenging compound of estradiol, a mixture of sucrose and d-glucose, and natural grape juice, verifying its feasibility and power, and boosting the potential application landscapes in various chemical fields.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jiawei Liu
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiyuan Fang
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xinyu Chen
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Ni
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lingling Zhou
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Zhan H, Liu J, Fang Q, Chen X, Ni Y, Zhou L. Fast Pure Shift NMR Spectroscopy Using Attention-Assisted Deep Neural Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309810. [PMID: 38840448 PMCID: PMC11304274 DOI: 10.1002/advs.202309810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Pure shift NMR spectroscopy enables the robust probing on molecular structure and dynamics, benefiting from great resolution enhancements. Despite extensive application landscapes in various branches of chemistry, the long experimental times induced by the additional time dimension generally hinder its further developments and practical deployments, especially for multi-dimensional pure shift NMR. Herein, this study proposes and implements the fast, reliable, and robust reconstruction for accelerated pure shift NMR spectroscopy with lightweight attention-assisted deep neural network. This deep learning protocol allows one to regain high-resolution signals and suppress undersampling artifacts, as well as furnish high-fidelity signal intensities along with the accelerated pure shift acquisition, benefitting from the introduction of the attention mechanism to highlight the spectral feature and information of interest. Extensive results of simulated and experimental NMR data demonstrate that this attention-assisted deep learning protocol enables the effective recovery of weak signals that are almost drown in the serious undersampling artifacts, and the distinction and recognition of close chemical shifts even though using merely 5.4% data, highlighting its huge potentials on fast pure shift NMR spectroscopy. As a result, this study affords a promising paradigm for the AI-assisted NMR protocols toward broader applications in chemistry, biology, materials, and life sciences, and among others.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Jiawei Liu
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Qiyuan Fang
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Xinyu Chen
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Yang Ni
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| | - Lingling Zhou
- Department of Biomedical EngineeringAnhui Provincial Engineering Research Center of Semiconductor Inspection Technology and InstrumentAnhui Province Key Laboratory of Measuring Theory and Precision InstrumentSchool of Instrument Science and Opto‐electronics EngineeringHefei University of TechnologyHefei230009China
| |
Collapse
|
8
|
Foster H, Nilsson M, Adams RW, Morris GA. Universally Quantitative Band-Selective Pure Shift NMR Spectroscopy. Anal Chem 2024; 96:9601-9609. [PMID: 38812212 PMCID: PMC11170551 DOI: 10.1021/acs.analchem.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
NMR spectroscopy is often described as a quantitative analytical technique. Strictly, only the simple pulse-acquire experiment is universally quantitative, but the poor signal resolution of the 1H NMR pulse-acquie experiment frequently complicates quantitative analysis. Pure shift NMR techniques provide higher resolution, by reducing signal overlap, but they are susceptible to a variety of sources of site-dependent signal loss. Here, we introduce a new method that corrects for signal loss from such sources in band-selective pure shift NMR experiments, by performing different numbers of iterations of the same pulse sequence elements before acquisition to allow extrapolation back to the loss-free signal. We apply this method to both interferogram and semi-realtime acquisition modes, obtaining integrals within 1% of those acquired from a pulse-acquire experiment for a three-component mixture.
Collapse
Affiliation(s)
- Howard
M. Foster
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gareth A. Morris
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
9
|
Lin X, Chen Y, Huang C, Feng X, Chen B, Huang Y, Chen Z. CTCOSY-JRES: A high-resolution three-dimensional NMR method for unveiling J-couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107675. [PMID: 38631172 DOI: 10.1016/j.jmr.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Two-dimensional (2D) J-resolved spectroscopy provides valuable information on J-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the J-coupling connectivity in 2D J-resolved spectra because the J-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the J-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-JRES (Constant-Time COrrelation SpectroscopY and J-REsolved Spectroscopy) in this paper. By combining the J-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the J-coupling constant along an additional dimension, ensuring high-resolution analysis of J-coupling connectivity and J-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-JRES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Bo Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
10
|
Zhan H, Chen Y, Cui Y, Zeng Y, Feng X, Tan C, Huang C, Lin E, Huang Y, Chen Z. Pure-Shift-Based Proton Magnetic Resonance Spectroscopy for High-Resolution Studies of Biological Samples. Int J Mol Sci 2024; 25:4698. [PMID: 38731917 PMCID: PMC11083948 DOI: 10.3390/ijms25094698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yinping Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yunsong Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chunhua Tan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Enping Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Zhan H, Liu J, Fang Q, Chen X, Hu L. Accelerated Pure Shift NMR Spectroscopy with Deep Learning. Anal Chem 2024; 96:1515-1521. [PMID: 38232235 DOI: 10.1021/acs.analchem.3c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Pure shift nuclear magnetic resonance (NMR) spectroscopy presents a promising solution to provide sufficient spectral resolution and has been increasingly applied in various branches of chemistry, but the optimal resolution is generally accompanied by long experimental times. We present a proof of concept of deep learning for fast, high-quality, and reliable pure shift NMR reconstruction. The deep learning (DL) protocol allows one to eliminate undersampling artifacts, distinguish peaks with close chemical shifts, and reconstruct high-resolution pure shift NMR spectroscopy along with accelerated acquisition. More meaningfully, the lightweight neural network delivers satisfactory reconstruction performance on personal computers by several hundred simulated data learning, which somewhat lifts the prohibiting demand for a large volume of real training samples and advanced computing hardware generally required in DL projects. Additionally, an M-to-S strategy applicable to common DL cases is further exploited to boost the network generalization capability. As a result, this study takes a meaningful step toward deep learning protocols for broad chemical applications.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Biomedical Engineering, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jiawei Liu
- Department of Biomedical Engineering, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiyuan Fang
- Department of Biomedical Engineering, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinyu Chen
- Department of Biomedical Engineering, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liangliang Hu
- Department of Biomedical Engineering, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Jiang NN, Ye YS, Liu X, Wang YL, Xu G. Rearranged Homoadamantane-Type Polycyclic Polyprenylated Acylphloroglucinols from Hypericum pseudohenryi. Org Lett 2023; 25:8965-8969. [PMID: 38064279 DOI: 10.1021/acs.orglett.3c03143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Hypseudohenones A-C (1-3), the first rearranged homoadamantane-type polycyclic polyprenylated acylphloroglucinols, were isolated from Hypericum pseudohenryi. Their structures with an unprecedented tricyclo[4.3.1.13,8]undecane-2,4,10-trione core were determined by spectroscopic analysis, quantum-chemical calculations, and X-ray crystallography. A method for determining the relative configuration at C-3 was established by the peak shape of H-28 or J-value of H-3/H-28. Moreover, 2-3 exhibited significant AChE inhibitory activity, and the interactions of 2-3 with AChE were evaluated by molecular docking.
Collapse
Affiliation(s)
- Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xia Liu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, People's Republic of China
| | - Yong-Ling Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
13
|
Chen X, Bertho G, Caradeuc C, Giraud N, Lucas-Torres C. Present and future of pure shift NMR in metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:654-673. [PMID: 37157858 DOI: 10.1002/mrc.5356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
NMR is one of the most powerful techniques for the analysis of biological samples in the field of metabolomics. However, the high complexity of fluids, tissues, or other biological materials taken from living organisms is still a challenge for state-of-the-art pulse sequences, thereby limiting the detection, the identification, and the quantification of metabolites. In this context, the resolution enhancement provided by broadband homonuclear decoupling methods, which allows for simplifying 1 H multiplet patterns into singlets, has placed this so-called pure shift technique as a promising approach to perform metabolic profiling with unparalleled level of detail. In recent years, the many advances achieved in the design of pure shift experiments has paved the way to the analysis of a wide range of biological samples with ultra-high resolution. This review leads the reader from the early days of the main pure shift methods that have been successfully developed over the last decades to address complex samples, to the most recent and promising applications of pure shift NMR to the field of NMR-based metabolomics.
Collapse
Affiliation(s)
- Xi Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Gildas Bertho
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Cédric Caradeuc
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Nicolas Giraud
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Covadonga Lucas-Torres
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| |
Collapse
|
14
|
Shukla VK, Heller GT, Hansen DF. Biomolecular NMR spectroscopy in the era of artificial intelligence. Structure 2023; 31:1360-1374. [PMID: 37848030 DOI: 10.1016/j.str.2023.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Biomolecular nuclear magnetic resonance (NMR) spectroscopy and artificial intelligence (AI) have a burgeoning synergy. Deep learning-based structural predictors have forever changed structural biology, yet these tools currently face limitations in accurately characterizing protein dynamics, allostery, and conformational heterogeneity. We begin by highlighting the unique abilities of biomolecular NMR spectroscopy to complement AI-based structural predictions toward addressing these knowledge gaps. We then highlight the direct integration of deep learning approaches into biomolecular NMR methods. AI-based tools can dramatically improve the acquisition and analysis of NMR spectra, enhancing the accuracy and reliability of NMR measurements, thus streamlining experimental processes. Additionally, deep learning enables the development of novel types of NMR experiments that were previously unattainable, expanding the scope and potential of biomolecular NMR spectroscopy. Ultimately, a combination of AI and NMR promises to further revolutionize structural biology on several levels, advance our understanding of complex biomolecular systems, and accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
15
|
Mishra SK, Suryaprakash N. Pure shift edited NMR methodologies for the extraction of Homo- and heteronuclear couplings with ultra-high resolution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 136-137:1-60. [PMID: 37716754 DOI: 10.1016/j.pnmrs.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 09/18/2023]
Abstract
The scalar couplings that result in the splitting of the signals in the NMR spectrum arise due to the interaction of the nuclear spins, whereby the spin polarization is transmitted through chemical bonds. The interaction strengths depend inter alia on the number of consecutive chemical bonds intervening between the two interacting spins and on the molecular conformation. The pairwise interaction of many spins in a molecule resulting in a complex spectrum poses a severe challenge to analyse the spectrum and hence the determination of magnitudes and signs of homo- and heteronuclear couplings. The problem is more severe in the analysis of 1H spectra than the spectra of most of the other nuclei due to the often very small chemical shift dispersion. As a consequence, the straightforward analysis and the accurate extraction of the coupling constants from the 1H spectrum of a complex spin system continues to remain a challenge, and often may be a formidable task. Over the years, the several pure shift-based one-dimensional and two-dimensional methodologies have been developed by workers in the field, which provide broadband homonuclear decoupling of proton spectra, removing the complexity but at the cost of the very informative scalar couplings. To circumvent this problem, several one-dimensional and two-dimensional NMR experiments have been developed for the determination of homonuclear and heteronuclear couplings (nJHX, where n = 1,2,3) while retaining the high resolution obtained by implementing pure shift strategies. This review attempts to summarize the extensive work reported by a large number of researchers over the years for the accurate determination of homo- and heteronuclear scalar couplings.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Department of Physics and NMR Research Centre, Indian Institute of Science Education and Research, Pune 411008, India.
| | - N Suryaprakash
- NMR Research Centre and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Pulido S, Rückert H, Falsone SF, Göbl C, Meyer NH, Zangger K. The membrane-binding bacterial toxin long direct repeat D inhibits protein translation. Biophys Chem 2023; 298:107040. [PMID: 37229877 DOI: 10.1016/j.bpc.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Bacterial plasmids and chromosomes widely contain toxin-antitoxin (TA) loci, which are implicated in stress response, growth regulation and even tolerance to antibiotics and environmental stress. Type I TA systems consist of a stable toxin-expressing mRNA, which is counteracted by an unstable RNA antitoxin. The Long Direct Repeat (LDR-) D locus, a type I TA system of Escherichia Coli (E. coli) K12, encodes a 35 amino acid toxic peptide, LdrD. Despite being characterized as a bacterial toxin, causing rapid killing and nucleoid condensation, little was known about its function and its mechanism of toxicity. Here, we show that LdrD specifically interacts with ribosomes which potentially blocks translation. Indeed, in vitro translation of LdrD-coding mRNA greatly reduces translation efficiency. The structure of LdrD in a hydrophobic environment, similar to the one found in the interior of ribosomes was determined by NMR spectroscopy in 100% trifluoroethanol solution. A single compact α-helix was found which would fit nicely into the ribosomal exit tunnel. Therefore, we conclude that rather than destroying bacterial membranes, LdrD exerts its toxic activity by inhibiting protein synthesis through binding to the ribosomes.
Collapse
Affiliation(s)
- Sergio Pulido
- Institute of Chemistry, University of Graz, Graz, Austria; LifeFactors ZF S.A.S., Zona France Rionegro, Rionegro, Colombia
| | - Hanna Rückert
- Institute of Chemistry, University of Graz, Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Christoph Göbl
- Dept. of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - N Helge Meyer
- Institute of Chemistry, University of Graz, Graz, Austria; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Germany.
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
17
|
Yang Z, Zheng X, Gao X, Zeng Q, Yang C, Luo J, Zhan C, Lin Y. Deep Learning Methodology for Obtaining Ultraclean Pure Shift Proton Nuclear Magnetic Resonance Spectra. J Phys Chem Lett 2023; 14:3397-3402. [PMID: 36999661 DOI: 10.1021/acs.jpclett.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nuclear magnetic resonance (NMR) is one of the most powerful analytical techniques. In order to obtain high-quality NMR spectra, a real-time Zangger-Sterk (ZS) pulse sequence is employed to collect low-quality pure shift NMR data with high efficiency. Then, a neural network named AC-ResNet and a loss function named SM-CDMANE are developed to train a network model. The model with excellent abilities of suppressing noise, reducing line widths, discerning peaks, and removing artifacts is utilized to process the acquired NMR data. The processed spectra with noise and artifact suppression and small line widths are ultraclean and high-resolution. Peaks overlapped heavily can be resolved. Weak peaks, even hidden in the noise, can be discerned from noise. Artifacts, even as high as spectral peaks, can be removed completely while not suppressing peaks. Eliminating perfectly noise and artifacts and smoothing baseline make spectra ultraclean. The proposed methodology would greatly promote various NMR applications.
Collapse
Affiliation(s)
- Zhengxian Yang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaoxu Zheng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Xinjing Gao
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Chuang Yang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Jie Luo
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Chaoqun Zhan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
18
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
McKay RT. Metabolomics and NMR. Handb Exp Pharmacol 2023; 277:73-116. [PMID: 36355220 DOI: 10.1007/164_2022_616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this manuscript will be to convince the reader to dive deeper into NMR spectroscopy and prevent the technique from being just another "black-box" in the lab. We will try to concisely highlight interesting topics and supply additional references for further exploration at each stage. The advantages of delving into the technique will be shown. The secondary objective, i.e., avoiding common problems before starting, will hopefully then become clear. Lastly, we will emphasize the spectrometer information needed for manuscript reporting to allow reproduction of results and confirm findings.
Collapse
Affiliation(s)
- Ryan T McKay
- Department Chemistry, College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
21
|
Haller JD, Bodor A, Luy B. Pure shift amide detection in conventional and TROSY-type experiments of 13C, 15N-labeled proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:213-221. [PMID: 36399207 PMCID: PMC9712348 DOI: 10.1007/s10858-022-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Large coupling networks in uniformly 13C,15N-labeled biomolecules induce broad multiplets that even in flexible proteins are frequently not recognized as such. The reason is that given multiplets typically consist of a large number of individual resonances that result in a single broad line, in which individual components are no longer resolved. We here introduce a real-time pure shift acquisition scheme for the detection of amide protons which is based on 13C-BIRDr,X. As a result the full homo- and heteronuclear coupling network can be suppressed at low power leading to real singlets at substantially improved resolution and uncompromised sensitivity. The method is tested on a small globular and an intrinsically disordered protein (IDP) where the average spectral resolution is increased by a factor of ~ 2 and higher. Equally important, the approach works without saturation of water magnetization for solvent suppression and exchanging amide protons are not affected by saturation transfer.
Collapse
Affiliation(s)
- Jens D. Haller
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Hermann-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Bodor
- Institute of Chemistry, Analytical and BioNMR Laboratory, ELTE –Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Hermann-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Baishya B. Slice selective absorption-mode J-resolved NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107267. [PMID: 35853368 DOI: 10.1016/j.jmr.2022.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Limited chemical shift dispersion and broad multiplet patterns limit resolution in 1H NMR spectra. J-Resolved spectroscopy overcomes this problem to a great extent. However, the phase-twist line shape in J-Resolved spectroscopy allows only the magnitude mode of the experiment to be practical, which degrades resolution. Recently, various pure shift or broadband homonuclear decoupling approaches have been integrated with J-Resolved spectroscopy to eliminate the broad dispersive contribution. In the present work, we demonstrate a broadband 1H-1H J-Resolved spectrum with a greatly reduced dispersive contribution using the concept of slice selection. We show that slice selective excitation, t1 encoding, storage, and detection of the in-phase absorptive signals can be executed, while a gradient-based suppression of the dispersive antiphase signals can be performed during the storage period. In more than two spin systems, a small part of the doubly antiphase absorptive signal may also contribute to the spectrum in addition to the inphase absorptive signals. The overall effect is a reduced multiplet pattern similar to a regular J-Resolved case as the passive spins remain unflipped due to slice selective pulses. However, the effect is broadband for a fraction of the spins when all slices are considered analogous to Zangger-Sterk (ZS) broadband homo-decoupling. Further, the fresh magnetization from neighboring slices can be accessed in different scans by frequency shifting of the slice selective pulses without a recycle delay-an elegant aspect of the ZS pulse element. This allows faster signal averaging, improving sensitivity which depends on the T1 relaxation time of the signals. This method displays sensitivity up to 4-20 percent of the regular J-RES 1H signals.
Collapse
Affiliation(s)
- Bikash Baishya
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
23
|
Pure shift NMR and DFT methods for revealing long-range heteronuclear couplings. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Leroy R, Pedinielli F, Bourbon G, Nuzillard JM, Lameiras P. Use of Diethanolamine as a Viscous Solvent for Mixture Analysis by Multidimensional Heteronuclear ViscY NMR Experiments. Anal Chem 2022; 94:9278-9286. [PMID: 35737881 DOI: 10.1021/acs.analchem.2c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diethanolamine/DMSO-d6 as a viscous binary solvent is first reported for the individualization of low-polarity mixture components by multidimensional heteronuclear ViscY NMR experiments under spin diffusion conditions. Solvent viscosity induces the slowing down of molecular tumbling, hence promoting magnetization transfer by dipolar longitudinal cross-relaxation. As a result, all 1H nuclei resonances within the same molecule may correlate in a 2D nuclear Overhauser effect spectroscopy (NOESY) spectrum, giving access to mixture analysis. We offer a new way to analyze mixtures by considering 3D heteronuclear heteronuclear single-quantum coherence-NOESY (HSQC-NOESY) experiments under viscous conditions. We state the individualization of four low-polarity chemical compounds dissolved in the diethanolamine/DMSO-d6 solvent blend using homonuclear selective 1D, 2D 1H-1H NOESY experiments and heteronuclear 1D, 2D 1H-19F heteronuclear Overhauser effect spectroscopy, 2D 1H-19F, 1H-31P HSQC-NOESY, and 3D 1H-19F-1H, 1H-31P-1H HSQC-NOESY experiments by taking profit from spin diffusion.
Collapse
Affiliation(s)
- Ritchy Leroy
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Francois Pedinielli
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Gautier Bourbon
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
25
|
Abstract
1H NMR has unique strengths, owing, for one, to 1H being the most sensitive NMR nucleus. However, the limited frequency range of 1H chemical shifts implies spectral crowding, leading to difficulties in assignment and interpretation of the spectra. Homonuclear broadband decoupling has been developed as a means of simplifying 1H NMR spectra but clearly leads to the inevitable and complete loss of precious information on homonuclear scalar couplings in solution state. A novel experiment is introduced in this work, which leads to partial 1H multiplet selectivity, thereby reducing spectral crowding, while at the same time permitting couplings to be inferred. The present one-dimensional (1D) experiment relies on two-way coherence transfer starting from 1H to coupled 13C carbons at natural abundance and ending finally with 1H detection. The experiment may be termed CArbon Single transition EDited (CASED) 1H NMR. The unusual spectral patterns that result are summarized, demonstrated, and rationalized for various molecular fragments. Artifacts in the present version of the CASED experiment are also described, and an application to the 1H NMR of a disaccharide is demonstrated as a first practical example.
Collapse
Affiliation(s)
- Christy George
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - N Chandrakumar
- MRI-MRS Centre and Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
26
|
Taylor DA, Natrajan LS, Nilsson M, Adams RW. SABRE-enhanced real-time pure shift NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1244-1252. [PMID: 34405451 DOI: 10.1002/mrc.5206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Pure shift nuclear magnetic resonance (NMR) methods suppress the effect of homonuclear scalar couplings to produce NMR spectra consisting solely of a single signal for each chemically distinct site. They are increasingly relied upon for analysis of complex molecules and mixtures as they overcome the extensive signal overlap that complicates proton NMR spectra of all but the simplest species. Current broadband pure shift methodologies for 1D proton spectra suffer from reduced sensitivity compared with their conventional counterparts and typically require a large amount of instrument time for low concentration samples. In this study, we demonstrate how the sensitivity limitation may be overcome by transiently increasing the bulk polarization using signal amplification by reversible exchange (SABRE) hyperpolarization. We utilize para-enriched dihydrogen to enhance the pure shift NMR resonances of pyridine by up to a factor of 60 in a single-scan experiment and extend this to propose a method to unambiguously determine mixture components based on the enhancement of their pure shift NMR signals.
Collapse
Affiliation(s)
- Daniel A Taylor
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ralph W Adams
- Department of Chemistry, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Sakhaii P, Bohorc B, Schliedermann U, Bermel W. Boosting the resolution of multidimensional NMR spectra by complete removal of proton spin multiplicities. Sci Rep 2021; 11:21566. [PMID: 34732770 PMCID: PMC8566458 DOI: 10.1038/s41598-021-01041-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Over decades multidimensional NMR spectroscopy has become an indispensable tool for structure elucidation of natural products, peptides and medium sized to large proteins. Heteronuclear single quantum coherence (HSQC) spectroscopy is one of the work horses in that field often used to map structural connectivity between protons and carbons or other hetero nuclei. In overcrowded HSQC spectra, proton multiplet structures of cross peaks set a limit to the power of resolution and make a straightforward assignment difficult. In this work, we provide a solution to improve these penalties by completely removing the proton spin multiplet structure of HSQC cross peaks. Previously reported sideband artefacts are diminished leading to HSQC spectra with singlet responses for all types of proton multiplicities. For sideband suppression, the idea of restricted random delay (RRD) in chunk interrupted data acquisition is introduced and exemplified. The problem of irreducible residual doublet splitting of diastereotopic CH2 groups is simply solved by using a phase sensitive JRES approach in conjunction with echo processing and real time broadband homodecoupling (BBHD) HSQC, applied as a 3D experiment. Advantages and limitations of the method is presented and discussed.
Collapse
Affiliation(s)
- Peyman Sakhaii
- NMR Laboratory of SANOFI, Global CMC Early Development, Synthetics Platform, Industrial Park Hoechst, Building G849, 65926, Frankfurt, Germany.
| | - Bojan Bohorc
- NMR Laboratory of SANOFI, Global CMC Early Development, Synthetics Platform, Industrial Park Hoechst, Building G849, 65926, Frankfurt, Germany
| | - Uwe Schliedermann
- NMR Laboratory of SANOFI, Global CMC Early Development, Synthetics Platform, Industrial Park Hoechst, Building G849, 65926, Frankfurt, Germany
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
| |
Collapse
|
28
|
Pedinielli F, Leroy R, Martinez A, Nuzillard JM, Lameiras P. ViscY NMR experiments in phosphoric acid as a viscous solvent for individualization of small molecules within mixtures by spin diffusion. Analyst 2021; 146:5316-5325. [PMID: 34338684 DOI: 10.1039/d1an00899d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of small molecules within complex mixtures is a particularly difficult task when dealing with the study of metabolite mixtures or chemical reaction media. This issue has fostered in recent years an active search for effective and practical solutions. In this context, the ViscY NMR approach has been recently proposed. ViscY collectively designates the NMR experiments that take advantage of spin diffusion in highly viscous solvents or solvent blends for the individualization of the NMR spectra of small molecule mixture components. Two viscous media were prepared from ortho-phosphoric acid (85%) solution by dilution with either D2O or DMSO-d6, thus providing solvent blends with slightly different polarities in which all liquid-state NMR experiments can be carried out easily. Two mixtures, one of four structurally close dipeptides and one of four low-polarity phosphorus-containing compounds, were used for the method assessment, using ViscY experiments such as homonuclear selective 1D and 2D 1H NOESY experiments, heteronuclear 2D 1H-15N/1H-31P HSQC-NOESY and 1H-13C/1H-15N/1H-31P NOAH experiments.
Collapse
Affiliation(s)
- Francois Pedinielli
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Ritchy Leroy
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Agathe Martinez
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| |
Collapse
|
29
|
Lameiras P, Nuzillard JM. Tailoring the nuclear Overhauser effect for the study of small and medium-sized molecules by solvent viscosity manipulation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:1-50. [PMID: 34078536 DOI: 10.1016/j.pnmrs.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The nuclear Overhauser effect (NOE) is a consequence of cross-relaxation between nuclear spins mediated by dipolar coupling. Its sensitivity to internuclear distances has made it an increasingly important tool for the determination of through-space atom proximity relationships within molecules of sizes ranging from the smallest systems to large biopolymers. With the support of sophisticated FT-NMR techniques, the NOE plays an essential role in structure elucidation, conformational and dynamic investigations in liquid-state NMR. The efficiency of magnetization transfer by the NOE depends on the molecular rotational correlation time, whose value depends on solution viscosity. The magnitude of the NOE between 1H nuclei varies from +50% when molecular tumbling is fast to -100% when it is slow, the latter case corresponding to the spin diffusion limit. In an intermediate tumbling regime, the NOE may be vanishingly small. Increasing the viscosity of the solution increases the motional correlation time, and as a result, otherwise unobservable NOEs may be revealed and brought close to the spin diffusion limit. The goal of this review is to report the resolution of structural problems that benefited from the manipulation of the negative NOE by means of viscous solvents, including examples of molecular structure determination, conformation elucidation and mixture analysis (the ViscY method).
Collapse
Affiliation(s)
- Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
30
|
Ilgen J, Nowag J, Kaltschnee L, Schmidts V, Thiele CM. Gradient selected pure shift EASY-ROESY techniques facilitate the quantitative measurement of 1H, 1H-distance restraints in congested spectral regions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106900. [PMID: 33503522 DOI: 10.1016/j.jmr.2020.106900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
For elucidating molecular structure and dynamics in solution, NMR experiments such as NOESY, ROESY and EXSY have been used excessively over the past decades, to provide interatomic distance restraints or rates for chemical exchange. The extraction of such information, however, is often prohibited by signal overlap in these spectra. To reduce this problem, pure shift methods for improving the spectral resolution have become popular. We report on pure shift EASY-ROESY experiments and their application to extract cross-relaxation rates, proton-proton distances and exchange rates. Homonuclear decoupling (pure shift) is applied in the indirect dimension using the PSYCHE or the perfectBASH technique, to enhance the spectral resolution of severely overcrowded spectral regions. The spectral quality is further improved by using a gradient selected F1-PSYCHE-EASY-ROESY, which produces significantly less t1-noise than the experiment used previously, as also demonstrated by employing the recently introduced SAN (signal-artefact-noise) plots. Applications include the quantification of distance restraints in a peptide organocatalyst and the extraction of a number of distance restraints in cyclosporine A, which were previously not available for analysis, because they were either located in overcrowded spectral regions or hidden under t1-noise. Distances extracted and exchange rates obtained are accurate. Also, the 2D gradient-selected F1-perfectBASH-EASY-ROESY with the additional gradient selection proposed herein, which is superior in terms of sensitivity, can be used to accurately quantify cross-relaxation.
Collapse
Affiliation(s)
- Julian Ilgen
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Jens Nowag
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Lukas Kaltschnee
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 16, D-64287 Darmstadt, Germany.
| |
Collapse
|
31
|
Gyöngyösi T, Timári I, Sinnaeve D, Luy B, Kövér KE. Expedited Nuclear Magnetic Resonance Assignment of Small- to Medium-Sized Molecules with Improved HSQC-CLIP-COSY Experiments. Anal Chem 2021; 93:3096-3102. [PMID: 33534547 DOI: 10.1021/acs.analchem.0c04124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance assignment is a pivotal step for any nuclear magnetic resonance (NMR) analysis, such as structure elucidation or the investigation of protein-ligand interactions. Both 1H-13C heteronuclear single quantum correlation (HSQC) and 1H-1H correlation spectroscopy (COSY) two-dimensional (2D) experiments are invaluable for 1H NMR assignment, by extending the high signal dispersion of 13C chemical shifts onto 1H resonances and by providing a high amount of through-bond 1H-1H connectivity information, respectively. The recently introduced HSQC-CLIP(Clean In-Phase)-COSY method combines these two experiments, providing COSY correlations along the high-resolution 13C dimension with clean in-phase multiplets. However, two experiments need to be recorded to unambiguously identify COSY cross-peaks. Here, we propose novel variants of the HSQC-CLIP-COSY pulse sequence that edit cross-peak signs so that direct HSQC responses can be distinguished from COSY relay peaks, and/or the multiplicities of the 13C nuclei are reflected, allowing the assignment of all the peaks in a single experiment. The advanced HSQC-CLIP-COSY variants have the potential to accelerate and simplify the NMR structure-elucidation process of both synthetic and natural products and to become valuable tools for high-throughput computer-assisted structure determination.
Collapse
Affiliation(s)
- Tamás Gyöngyösi
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - István Timári
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Davy Sinnaeve
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille F-59000, France
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary.,MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
32
|
Zhan H, Huang Y, Wang X, Shih TM, Chen Z. Highly Efficient Determination of Complex NMR Multiplet Structures in Inhomogeneous Magnetic Fields. Anal Chem 2021; 93:2419-2423. [PMID: 33395270 DOI: 10.1021/acs.analchem.0c04365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proton-proton scalar (J) coupling plays an important role in disentangling molecular structures and spatial conformations. But it is challenging to extract J coupling networks from congested 1H NMR spectra, especially in inhomogeneous magnetic fields. Herein, we propose a general liquid NMR protocol, named HR-G-SERF, to implement highly efficient determination of individual J couplings and corresponding coupling networks via simultaneously suppressing effects of spectral congestions and magnetic field inhomogeneity. This method records full-resolved 2D absorption-mode spectra to deliver great convenience for multipet analyses on complex samples. More meaningfully, it is capable of disentangling multiplet structures of biological samples, that is, grape sarcocarp, despite of its heterogeneous semisolid state and extensive compositions. In addition, a modification, named AH-G-SERF, is developed to compress experimental acquisition and subsequently improve unit-time SNR, while maintaining satisfactory spectral performance. This accelerated variant may further boost the applicability for rapid NMR detections and afford the possibility of adopting hyperpolarized substances to enhance the overall sensitivity. Therefore, this study provides a promising tool for molecular structure elucidations and composition analyses in chemistry, biochemistry, and metabonomics among others.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Xinchang Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Tien-Mo Shih
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| |
Collapse
|
33
|
Bodor A, Haller JD, Bouguechtouli C, Theillet FX, Nyitray L, Luy B. Power of Pure Shift HαCα Correlations: A Way to Characterize Biomolecules under Physiological Conditions. Anal Chem 2020; 92:12423-12428. [PMID: 32786451 DOI: 10.1021/acs.analchem.0c02182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) constitute an important class of biomolecules with high flexibility. Atomic-resolution studies for these molecules are essentially limited to NMR spectroscopy, which should be performed under physiological pH and temperature to populate relevant conformational ensembles. In this context, however, fundamental problems arise with established triple resonance NMR experiments: high solvent accessibility of IDPs promotes water exchange, which disfavors classical amide 1H-detection, while 13C-detection suffers from significantly reduced sensitivity. A favorable alternative, the conventional detection of nonexchangeable 1Hα, so far resulted in broad signals with insufficient resolution and sensitivity. To overcome this, we introduce here a selective Hα,Cα-correlating pure shift detection scheme, the selective Hα,Cα-HSQC (SHACA-HSQC), using extensive hetero- and homonuclear decoupling applicable to aqueous samples (≥90% H2O) and tested on small molecules and proteins. SHACA-HSQC spectra acquired on IDPs provide uncompromised resolution and sensitivity (up to fivefold increased S/N compared to the standard 1H,13C-HSQC), as shown for resonance distinction and unambiguous assignment on the disordered transactivation domain of the tumor suppressor p53, α-synuclein, and folded ubiquitin. The detection scheme can be implemented in any 1Hα-detected triple resonance experiment and may also form the basis for the detection of isotope-labeled markers in biological studies or compound libraries.
Collapse
Affiliation(s)
- Andrea Bodor
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Jens D Haller
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4-Magnetische Resonanz, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, Karlsruhe 76133, Germany
| | - Chafiaa Bouguechtouli
- Institute of Integrative Biology of the Cell, UMR9198, CNRS/CEA/ University of Paris Saclay, Gif-Sur-Yvette 911991, France
| | - Francois-Xavier Theillet
- Institute of Integrative Biology of the Cell, UMR9198, CNRS/CEA/ University of Paris Saclay, Gif-Sur-Yvette 911991, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary
| | - Burkhard Luy
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4-Magnetische Resonanz, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, Karlsruhe 76133, Germany
| |
Collapse
|
34
|
Sakhaii P, Bohorc B, Schliedermann U, Berchtold H, Bermel W. Mirror symmetric broadband homodecoupled perfect echo spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 315:106753. [PMID: 32464370 DOI: 10.1016/j.jmr.2020.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
A new experiment for recording phase sensitive ω1-broadband homodecoupled TOCSY spectra is presented. The method is an extension of the already existing perfect echo (PE) filter, proposed to sample t1 chemical shift under sustained homodecoupling. The modification is made by attaching a time reversed perfect echo filter to a regular perfect echo scheme. Thus it becomes possible to acquire for longer t1 acquisition times without compromising the quality of homodecoupling. The mirror symmetric double perfect echo is implemented into the evolution period of a TOCSY experiment. A spin lock pulse purges undesired dispersive antiphase components at the end of the central t1 evolution period. Pure absorptive lineshapes with reduced proton spin multiplicities are obtained. The approach can be used in conjunction with real or constant time chemical shift evolution. In case of compounds with reduced T2 relaxation time, the real time approach is advisable, where the echo delays are an extension of the t1 evolution period. In this way, an unnecessary loss due to T2 relaxation is avoided. Using the pulse sequence in constant time mode at high t1max values gives ω1-homodecoupled TOCSY spectra without a significant dependence of the transfer amplitude on J. All experiments were carried out using non uniform sampling to decrease the measurement time. Experimental setup, advantages and limitations are discussed.
Collapse
Affiliation(s)
- Peyman Sakhaii
- NMR Laboratory of SANOFI, TIDES Analytical Sciences / German NMR Platform Industriepark Hoechst, Building G849, D-65926 Frankfurt/Main, Germany.
| | - Bojan Bohorc
- NMR Laboratory of SANOFI, TIDES Analytical Sciences / German NMR Platform Industriepark Hoechst, Building G849, D-65926 Frankfurt/Main, Germany.
| | - Uwe Schliedermann
- NMR Laboratory of SANOFI, TIDES Analytical Sciences / German NMR Platform Industriepark Hoechst, Building G849, D-65926 Frankfurt/Main, Germany.
| | - Harald Berchtold
- NMR Laboratory of SANOFI, TIDES Analytical Sciences / German NMR Platform Industriepark Hoechst, Building G849, D-65926 Frankfurt/Main, Germany.
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen, D-76287 Rheinstetten, Germany.
| |
Collapse
|
35
|
Pedinielli F, Nuzillard JM, Lameiras P. Mixture Analysis in Viscous Solvents by NMR Spin Diffusion Spectroscopy: ViscY. Application to High- and Low-Polarity Organic Compounds Dissolved in Sulfolane/Water and Sulfolane/DMSO-d6 Blends. Anal Chem 2020; 92:5191-5199. [DOI: 10.1021/acs.analchem.9b05725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- François Pedinielli
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| | - Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
36
|
Singh U, Bhattacharya S, Baishya B. Pure shift HMQC: Resolution and sensitivity enhancement by bilinear rotation decoupling in the indirect and direct dimensions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106684. [PMID: 31931343 DOI: 10.1016/j.jmr.2020.106684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The heteronuclear multiple-quantum coherence in the indirect dimension of the two-dimensional HMQC experiment evolves under the passive 1H-1H J-couplings leading to multiplet structures in the F1 dimension. Besides, 1H-1H J-multiplets appear in the direct dimension as well. Thus, multiplets along both dimensions lower the resolution and sensitivity of this technique, when high resolution is required along both dimensions. An efficient broadband homodecoupling scheme along the F1 dimension of the HMQC experiment has not been realized to date. We have implemented broadband homonuclear decoupling using bilinear rotation decoupling (BIRD) by adding a 1H SQ evolution period followed by BIRD before the 1H-13C multiple-quantum evolution period in the HMQC. In the direct time domain, BIRD is implemented using a real-time or single-scan scheme, which further improves resolution and sensitivity of this technique. The resulting pure shift HMQC provides singlet peak per chemical site along F1 as well as F2 axes and, hence, better resolution and sensitivity than conventional HMQC spectrum for all peaks except diastereotopic methylene protons. Due to the incorporation of the BIRD, the indirect time domain becomes double in length compared to the conventional HMQC. However, slow relaxation of small molecules favors better sensitivity for ps-HMQC relative to conventional HMQC under all conditions. We also found that the sensitivity of ps-HMQC is only slightly less than ps-HSQC for small molecules.
Collapse
Affiliation(s)
- Upendra Singh
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India; Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subrato Bhattacharya
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bikash Baishya
- Centre of Biomedical Research (Formerly Centre of Biomedical Magnetic Resonance), SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
37
|
Lin X, Zhan H, Li H, Huang Y, Chen Z. NMR Relaxation Measurements on Complex Samples Based on Real-Time Pure Shift Techniques. Molecules 2020; 25:molecules25030473. [PMID: 31979172 PMCID: PMC7037015 DOI: 10.3390/molecules25030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Longitudinal spin-lattice relaxation (T1) and transverse spin-spin relaxation (T2) reveal valuable information for studying molecular dynamics in NMR applications. Accurate relaxation measurements from conventional 1D proton spectra are generally subject to challenges of spectral congestion caused by J coupling splittings and spectral line broadenings due to magnetic field inhomogeneity. Here, we present an NMR relaxation method based on real-time pure shift techniques to overcome these two challenges and achieve accurate measurements of T1 and T2 relaxation times from complex samples that contain crowded NMR resonances even under inhomogeneous magnetic fields. Both theoretical analyses and detailed experiments are performed to demonstrate the effectiveness and ability of the proposed method for accurate relaxation measurements on complex samples and its practicability to non-ideal magnetic field conditions.
Collapse
|
38
|
Zhan H, Huang Y, Chen Z. High-Resolution Probing of Heterogeneous Samples by Spatially Selective Pure Shift NMR Spectroscopy. J Phys Chem Lett 2019; 10:7356-7361. [PMID: 31718190 DOI: 10.1021/acs.jpclett.9b03092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid NMR spectroscopy generally encounters two major challenges for high-resolution measurements of heterogeneous samples, namely, magnetic field inhomogeneity caused by spatial variations in magnetic susceptibility and spectral congestion induced by crowded NMR resonances. In this study, we demonstrate a spatially selective pure shift NMR approach for high-resolution probing of heterogeneous samples by suppressing effects of field inhomogeneity and J coupling simultaneously. A Fourier phase encoding strategy is proposed and implemented for spatially selective pure shift experiments to enhance signal intensity and further boost the applicability. The spatially selective pure shift method can serve as an effective tool for high-resolution probing of heterogeneous samples, thus presenting interesting prospects for extensive applications in the fields of chemistry, physics, biology, and food science.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| | - Yuqing Huang
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| | - Zhong Chen
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
39
|
Kakita VMR, Rachineni K, Hosur RV. Ultraclean Pure Shift NMR Spectroscopy with Adiabatic Composite Refocusing Pulses: Application to Metabolite Samples. ChemistrySelect 2019. [DOI: 10.1002/slct.201902238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE-Centre for Excellence in Basic SciencesUniversity of MumbaiKalina Campus, Santacruz 400 098 Mumbai India
| | - Kavitha Rachineni
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Powai 400076 Mumbai India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic SciencesUniversity of MumbaiKalina Campus, Santacruz 400 098 Mumbai India
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Powai 400076 Mumbai India
| |
Collapse
|
40
|
Bo Y, Feng J, Xu J, Huang Y, Cai H, Cui X, Dong J, Ding S, Chen Z. High-resolution pure shift NMR spectroscopy offers better metabolite discrimination in food quality analysis. Food Res Int 2019; 125:108574. [PMID: 31554106 DOI: 10.1016/j.foodres.2019.108574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/04/2023]
Abstract
PSYCHE homonuclear decoupling, a prominent pure shift NMR method, is successfully applied to adulteration discrimination of honey and geographical originality identification of tea. Effects of homonuclear couplings are efficiently suppressed, producing resolution-enhanced spectra. The pair wise honey and tea samples are well separated in OPLS-DA models with high predictability. Due to the well-resolved and accurate assignment of singlet resonances after decoupling, PSYCHE is advantageous in the identification of differential components and accurate quantification of compound concentrations presented by enhanced volcano and Beeswarm plots of honey samples, while the analysis of NOESY is easily interfered by overlapped resonances, which is further proved by the STOCSY analysis, displaying the spectral stability and reproducibility. Experimental results show that PSYCHE can improve the spectral resolution of natural complex products such as honey and tea and be combined with multivariate statistical analysis and serve as a supplementary technique to the standard methods, especially for samples systems composed by a few high-content compounds.
Collapse
Affiliation(s)
- Yu Bo
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - JingJing Xu
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Honghao Cai
- School of Science, Jimei University, Xiamen, China
| | - Xiaohong Cui
- Department of Electronic Science, Xiamen University, Xiamen, China.
| | - Jiyang Dong
- Department of Electronic Science, Xiamen University, Xiamen, China.
| | - Shangwu Ding
- Natl Sun Yat Sen Univ, Dept Chem, Taiwan; Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Kaohsiung 80424, Taiwan
| | - Zhong Chen
- Department of Electronic Science, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Isbill SB, Chandrachud PP, Kern JL, Jenkins DM, Roy S. Elucidation of the Reaction Mechanism of C 2 + N 1 Aziridination from Tetracarbene Iron Catalysts. ACS Catal 2019; 9:6223-6233. [PMID: 31534826 DOI: 10.1021/acscatal.9b01306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A combined computational and experimental study was undertaken to elucidate the mechanism of catalytic C2 + N1 aziridination supported by tetracarbene iron complexes. Three specific aspects of the catalytic cycle were addressed. First, how do organic azides react with different iron catalysts and why are alkyl azides ineffective for some catalysts? Computation of the catalytic pathway using density functional theory (DFT) revealed that an alkyl azide needs to overcome a higher activation barrier than an aryl azide to form an iron imide, and the activation barrier with the first-generation catalyst is higher than the activation barrier with the second-generation variant. Second, does the aziridination from the imide complex proceed through an open-chain radical intermediate that can change stereochemistry or, instead, via an azametallacyclobutane intermediate that retains stereochemistry? DFT calculations show that the formation of aziridine proceeds via the open-chain radical intermediate, which qualitatively explains the formation of both aziridine diastereomers as seen in experiments. Third, how can the formation of the side product, a metallotetrazene, be prevented, which would improve the yield of aziridine at lower alkene loading? DFT and experimental results demonstrate that sterically bulky organic azides prohibit formation of the metallotetrazene and, thus, allow lower alkene loading for effective catalysis. These multiple insights of different aspects of the catalytic cycle are critical for developing improved catalysts for C2 + N1 aziridination.
Collapse
Affiliation(s)
- Sara B. Isbill
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Preeti P. Chandrachud
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jesse L. Kern
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sharani Roy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
42
|
Aloui G, Bouabdallah S, Baltaze JP, Pucheta JEH, Touil S, Farjon J, Giraud N. Monitoring Conformational Changes in an Enzyme Conversion Inhibitor Using Pure Shift Exchange NMR Spectroscopy. Chemphyschem 2019; 20:1738-1746. [PMID: 31033157 DOI: 10.1002/cphc.201900244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Indexed: 11/06/2022]
Abstract
We report the acquisition of 2D NMR EXSY spectra with ultrahigh resolution, which allows for probing the slow conformational exchange process in a pharmaceutical compound. The resolution enhancement is achieved by implementing interferogram based PSYCHE homonuclear decoupling to generate a pure shift proton spectrum along the direct domain of the resulting data. The performance of this pure shift EXSY pulse sequence is compared to the standard experiment recorded under identical conditions. It is found that although being less sensitive and requiring a longer acquisition time, the quality of pure shift spectra allows for extracting exchange rates values that are coherent with the ones determined by standard approach, on a temperature range that demonstrates the robustness of the chosen homonuclear decoupling method. The resolution enhancement provided by the simplification of proton line shape allows for probing a higher number of proton sites whose analysis would have been biased using a standard method. These results open the way to a thorough and accurate study of chemical exchange processes based on a multi-site analysis of 2D pure shift EXSY spectra.
Collapse
Affiliation(s)
- G Aloui
- Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay Equipe RMN en Milieu Orienté UMR CNRS-UPS 8182, 91405, Orsay, France.,Laboratory of Hetero-Organic Compounds and Nanostructured Materials, University of Carthage, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - S Bouabdallah
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials, University of Carthage, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - J P Baltaze
- Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay Equipe RMN en Milieu Orienté UMR CNRS-UPS 8182, 91405, Orsay, France
| | - J E H Pucheta
- Consejo Nacional de Ciencia y Tecnología - Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo, 56230, Estado de México, México
| | - S Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials, University of Carthage, Faculty of Sciences of Bizerte, 7021, Jarzouna, Tunisia
| | - J Farjon
- CEISAM UMR CNRS 6230, Faculté des Sciences et Techniques, 2 rue de la Houssinière, BP, 92208, 44322 Nantes cedex 3, France
| | - N Giraud
- Université Paris Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay Equipe RMN en Milieu Orienté UMR CNRS-UPS 8182, 91405, Orsay, France.,Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
43
|
Lin Y, Zeng Q, Lin L, Chen Z. High Resolution Nuclear Magnetic Resonance Spectroscopy on Biological Tissue and Metabolomics. Curr Med Chem 2019; 26:2190-2207. [DOI: 10.2174/0929867326666190312130155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/14/2017] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
High-resolution nuclear magnetic resonance (NMR) spectroscopy is a universal
analytical tool. It can provide detailed information on chemical shifts, J coupling constants,
multiplet patterns, and relative peak areas. It plays an important role in the fields of chemistry,
biology, medicine, and pharmacy. A highly homogeneous magnetic field is a prerequisite for
excellent spectral resolution. However, in some cases, such as in vivo and ex vivo biological
tissues, the magnetic field inhomogeneity due to magnetic susceptibility variation in samples
is unavoidable and hard to eliminate by conventional methods. The techniques based on intermolecular
multiple quantum coherences and conventional single quantum coherence can
remove the influence of the field inhomogeneity effects and be applied to obtain highresolution
NMR spectra of biological tissues, including in vivo animal and human tissues.
Broadband 1H homo-decoupled NMR spectroscopy displays J coupled resonances as collapsed
singlets, resulting in highly resolved spectra. It can be used to acquire high-resolution
spectra of some pharmaceuticals. The J-difference edited spectra can be used to detect J coupled
metabolites, such as γ-aminobutyric acid, the detection of which is interfered by intense
neighboring peaks. High-resolution 1H NMR spectroscopy has been widely utilized for the
identification and characterization of biological fluids, constituting an important tool in drug
discovery, drug development, and disease diagnosis.
Collapse
Affiliation(s)
- Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Qing Zeng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Liangjie Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
| |
Collapse
|
44
|
Rao Kakita VM, Joshi MV, Hosur RV. G-SERF Editing in Two-Dimensional Pure-Shift Total Correlation Spectroscopy: Scalar Coupling Measurements for a Group of Spins in Organic Molecules. Chemphyschem 2019; 20:1559-1566. [PMID: 30997947 DOI: 10.1002/cphc.201900174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/13/2019] [Indexed: 11/10/2022]
Abstract
A novel G-SERF-PSYCHE-TOCSY (gradient encoded selective refocusing in pure shift yielded by chirp excitation version of total correlation spectroscopy) NMR pulse scheme has been proposed, which produces TOCSY chemical shift correlations, on one hand, and scalar coupling values for the spins scalarly coupled to irradiated resonances, by showing them as doublets along the indirect dimension, on the other. Therefore, recording such an experiment, for a group of spins with overlapping chemical shifts, in organic molecules can adequately provide scalar coupling information in a G-SERF manner along the indirect dimensions, and they can be assigned to particular spin pairs. Such COSY chemical shift correlations (which appear as doublets for the scalarly coupled spins) can be readily discriminated from the TOCSY peaks (which do not show such splitting) in the G-SERF-PSYCHE-TOCSY spectrum.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai, 400 098, India
| | - Mamata V Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1-Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Ramakrishna V Hosur
- UM-DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai, 400 098, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
45
|
Haller JD, Bodor A, Luy B. Real-time pure shift measurements for uniformly isotope-labeled molecules using X-selective BIRD homonuclear decoupling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:64-71. [PMID: 30965191 DOI: 10.1016/j.jmr.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
We introduce a novel selective inversion element for chunked homonuclear decoupling that combines isotope selection via BIRD-filtering with band-selective inversion on the X-heteronucleus and allows efficient real-time decoupling of homonuclear and heteronuclear couplings. It is especially suitable for uniformly isotope-labeled compounds. We discuss in detail the inversion element based on band-selective refocusing on the X-nuclei (BASEREX), highlighting in particular the role of appropriate band-selective shaped refocusing pulses and the application of broadband X-pulses for an effective BIRDd element during homodecoupling. The approach is experimentally verified and studied in detail using uniformly 13C-labeled glucose and a uniformly 15N,13C-labeled amino acid mixture.
Collapse
Affiliation(s)
- Jens D Haller
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
| | - Andrea Bodor
- Eötvös Loránd University, Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Burkhard Luy
- Institut für Organische Chemie and Institut für Biologische Grenzflächen 4 - Magnetische Resonanz, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany.
| |
Collapse
|
46
|
Castaing-Cordier T, Bouillaud D, Bowyer P, Gonçalves O, Giraudeau P, Farjon J. Highly Resolved Pure-Shift Spectra on a Compact NMR Spectrometer. Chemphyschem 2019; 20:736-744. [DOI: 10.1002/cphc.201801116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/02/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Thomas Castaing-Cordier
- CEISAM UMR CNRS 6230; Faculté des Sciences et Techniques 2 rue de la Houssinière, BP 92208; 44322 Nantes cedex 3 France
| | - Dylan Bouillaud
- CEISAM UMR CNRS 6230; Faculté des Sciences et Techniques 2 rue de la Houssinière, BP 92208; 44322 Nantes cedex 3 France
- Université de Nantes; GEPEA, UMR CNRS 6144 Bât CRTT; 37 boulevard de l'Université, BP406 44602 St Nazaire cedex France
| | - Paul Bowyer
- Magritek Inc.; 103 Great Valley Pkwy Malvern PA 19355 USA
| | - Olivier Gonçalves
- Université de Nantes; GEPEA, UMR CNRS 6144 Bât CRTT; 37 boulevard de l'Université, BP406 44602 St Nazaire cedex France
| | - Patrick Giraudeau
- CEISAM UMR CNRS 6230; Faculté des Sciences et Techniques 2 rue de la Houssinière, BP 92208; 44322 Nantes cedex 3 France
- Institut Universitaire de France; 1 rue Descartes 75005 Paris France
| | - Jonathan Farjon
- CEISAM UMR CNRS 6230; Faculté des Sciences et Techniques 2 rue de la Houssinière, BP 92208; 44322 Nantes cedex 3 France
| |
Collapse
|
47
|
Timári I, Wang C, Hansen AL, Costa dos Santos G, Ok Yoon S, Bruschweiler-Li L, Brüschweiler R. Real-Time Pure Shift HSQC NMR for Untargeted Metabolomics. Anal Chem 2019; 91:2304-2311. [PMID: 30608652 PMCID: PMC6386528 DOI: 10.1021/acs.analchem.8b04928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sensitivity and resolution are key considerations for NMR applications in general and for metabolomics in particular, where complex mixtures containing hundreds of metabolites over a large range of concentrations are commonly encountered. There is a strong demand for advanced methods that can provide maximal information in the shortest possible time frame. Here, we present the optimization and application of the recently introduced 2D real-time BIRD 1H-13C HSQC experiment for NMR-based metabolomics of aqueous samples at 13C natural abundance. For mouse urine samples, it is demonstrated how this real-time pure shift sensitivity-improved heteronuclear single quantum correlation method provides broadband homonuclear decoupling along the proton detection dimension and thereby significantly improves spectral resolution in regions that are affected by spectral overlap. Moreover, the collapse of the scalar multiplet structure of cross-peaks leads to a sensitivity gain of about 40-50% over a traditional 2D HSQC-SI experiment. The experiment works well over a range of magnetic field strengths and is particularly useful when resonance overlap in crowded regions of the HSQC spectra hampers accurate metabolite identification and quantitation.
Collapse
Affiliation(s)
- István Timári
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cheng Wang
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gilson Costa dos Santos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Lameiras P, Mougeolle S, Pedinielli F, Nuzillard JM. Polar mixture analysis by NMR under spin diffusion conditions in viscous sucrose solution and agarose gel. Faraday Discuss 2019; 218:233-246. [DOI: 10.1039/c8fd00226f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A viscous sucrose solution is used for the first time to access individual NMR spectra of mixture components under spin diffusion conditions.
Collapse
Affiliation(s)
- Pedro Lameiras
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims
- CNRS UMR 7312
- 51687 Reims Cedex 02
- France
| | - Simon Mougeolle
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims
- CNRS UMR 7312
- 51687 Reims Cedex 02
- France
| | - François Pedinielli
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims
- CNRS UMR 7312
- 51687 Reims Cedex 02
- France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims
- CNRS UMR 7312
- 51687 Reims Cedex 02
- France
| |
Collapse
|
49
|
Lin Y, Zeng Q, Lin L, Chen Z, Barker PB. High-resolution methods for the measurement of scalar coupling constants. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:135-159. [PMID: 30527134 DOI: 10.1016/j.pnmrs.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 06/09/2023]
Abstract
Scalar couplings provide important information regarding molecular structure and dynamics. The measurement of scalar coupling constants constitutes a topic of interest and significance in NMR spectroscopy. However, the measurement of J values is often not straightforward because of complex signal splitting patterns and signal overlap. Many methods have been proposed for the measurement of scalar coupling constants, both for homonuclear and heteronuclear cases. Different approaches to the measurement of scalar coupling constants are reviewed here with several applications presented. The accurate measurement of scalar coupling constants can greatly facilitate molecular structure elucidation and the study of molecule dynamics.
Collapse
Affiliation(s)
- Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China.
| | - Qing Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangjie Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Dumez JN. Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:101-134. [PMID: 30527133 DOI: 10.1016/j.pnmrs.2018.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023]
Abstract
A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.
Collapse
Affiliation(s)
- Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|