1
|
Abdelsalam M, Swillam MA. Ultra-broadband MIR super absorber using all silicon metasurface of triangular doped nanoprisms. Sci Rep 2022; 12:14802. [PMID: 36045138 PMCID: PMC9433398 DOI: 10.1038/s41598-022-18817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Thermo-electric generation offers to be a solid candidate for both dealing with the temperature problems of photo-voltaic cells and increasing its total output power. However, it requires an efficient broadband absorber to harness the power found in the near and mid-infrared regions. In this work, we discuss a new structure of nanoprisms that are made of doped silicon that acts as an ultra-broadband absorber in both regions. We also discuss the effect of the doping concentration. Additionally, we study the effect of a pure silicon thin film on top of the prisms. Finally, we’re able to find an optimized structure that can absorb 92.6% of the input power from 1 to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${15}\,{\upmu }$$\end{document}15μm.
Collapse
Affiliation(s)
- Mostafa Abdelsalam
- Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed A Swillam
- Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
2
|
Kim S, Cahoon JF. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology. Acc Chem Res 2019; 52:3511-3520. [PMID: 31799833 DOI: 10.1021/acs.accounts.9b00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Comprehensive control of light-matter interactions at the nanoscale is increasingly important for the development of miniaturized light-based technologies that have applications ranging from information processing to sensing. Control of light in nanoscale structures-the realm of nanophotonics-requires precise control of geometry on a few-nanometer length scale. From a chemist's perspective, bottom-up growth of nanoscale materials from chemical precursors offers a unique opportunity to design structures atom-by-atom that exhibit desired properties. In this Account, we describe our efforts to create chemically and morphologically precise Si nanowires (NWs) with designed nanophotonic properties using a vapor-liquid-solid (VLS) growth process. A synthetic technique termed "Encoded Nanowire Growth and Appearance through VLS and Etching" (ENGRAVE) combines optimized VLS growth, dopant modulation, and dopant-dependent wet-chemical etching to produce NWs with precisely designed diameter modulations, yielding lithographic-like morphological control that can vary from sinusoids to fractals. The ENGRAVE NWs thus provide a versatile playground for coupling, trapping, and directing light in a nanoscale geometry. Previously, the nanophotonic functionality of NWs primarily relied on uniform-diameter structures that exhibit Mie scattering resonances and longitudinally oriented guided modes, two key photonic properties that typically cannot be utilized simultaneously due to their orthogonality. However, when the NW diameter is controllably modulated along the longitudinal axis on a scale comparable to the wavelength of light-a geometry we term a geometric superlattice (GSL)-we found that NWs can exhibit a much richer and tunable set of nanophotonic properties, as described herein. To understand these unique properties, we first summarize the basic optical properties of uniform-diameter NWs using Mie scattering theory and dispersion relations, and we describe both conventional and relatively new microscopy methods that experimentally probe the optical properties of single NWs. Next, delving into the properties of NW GSLs, we summarize their ability to couple a Mie resonance with a guided mode at a select wavevector (or wavelength) dictated by their geometric pitch. The coupling forms a bound guided state (BGS) with a standing wave profile, which allows a NW GSL to serve as a spectrally selective light coupler and to act as optical switch or sensor. We also summarize the capacity of a GSL to trap light by serving as an ultrahigh (theoretically infinite) quality factor optical cavity with an optical bound state in the continuum (BIC), in which destructive interference prevents coupling to and from the far field. Finally, we discuss a future research outlook for using ENGRAVE NWs for nanoscale light control. For instance, we highlight research avenues that could yield light-emitting devices by interfacing a NW-based BIC with emissive materials such as quantum dots, 2D materials, and hybrid perovskite. We also discuss the design of photonic band gaps, generation of high-harmonics with quasi-BIC structures, and the possibility for undiscovered nanophotonic properties and phenomena through more complex ENGRAVE geometric designs.
Collapse
Affiliation(s)
- Seokhyoung Kim
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - James F. Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
3
|
Abstract
In this work, we propose an all-silicon-based super absorber in the mid infrared (MIR) spectral range. The presented structures are composed of n-doped silicon nanoparticles or nanowires embedded in intrinsic silicon. An intense absorption peak is observed and could be tuned across the MIR range. While nanoparticles give a single broad absorption peak, the nanowires structure shows a broadband absorption of more than 70% from λ = 5 to 13 µm reaching up to 99% at 7 µm. The absorption peak could be extended to more than 20 µm by increasing the length of the nanowire. Increasing the diameter of the nanoparticles gives higher absorption, reaching just above 90% efficiency at λ = 11 µm for a diameter of 1500 nm. Changing the geometrical parameters of each structure is thoroughly studied and analyzed to obtain highest absorption in MIR. The proposed structures are CMOS compatible, have small footprints and could be integrated for on-chip applications.
Collapse
|
4
|
Liu D, Niu J, Zhu H, Zhang J. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna. NANOTECHNOLOGY 2018; 29:06LT01. [PMID: 29251264 DOI: 10.1088/1361-6528/aaa25b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors' knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna's matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.
Collapse
Affiliation(s)
- Dingxin Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
5
|
Ritchie ET, Hill DJ, Mastin TM, Deguzman PC, Cahoon JF, Atkin JM. Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy. NANO LETTERS 2017; 17:6591-6597. [PMID: 29032679 DOI: 10.1021/acs.nanolett.7b02340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) as a nondestructive method to map free-carriers in axially modulation-doped silicon nanowires (SiNWs) with nanoscale spatial resolution. Using this technique, we can detect local changes in the electrically active doping concentration based on the infrared free-carrier response in SiNWs grown using the vapor-liquid-solid (VLS) method. We demonstrate that IR s-SNOM is sensitive to both p-type and n-type free-carriers for carrier densities above ∼1 × 1019 cm-3. We also resolve subtle changes in local conductivity properties, which can be correlated with growth conditions and surface effects. The use of s-SNOM is especially valuable in low mobility materials such as boron-doped p-type SiNWs, where optimization of growth has been difficult to achieve due to the lack of information on dopant distribution and junction properties. s-SNOM can be widely employed for the nondestructive characterization of nanostructured material synthesis and local electronic properties without the need for contacts or inert atmosphere.
Collapse
Affiliation(s)
- Earl T Ritchie
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - David J Hill
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Tucker M Mastin
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Panfilo C Deguzman
- Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte , Charlotte, North Carolina 28223, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joanna M Atkin
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Lahiri A, Lu T, Behrens N, Borisenko N, Li G, Endres F. Hydrofluoric Acid-Free Electroless Deposition of Metals on Silicon in Ionic Liquids and Its Enhanced Performance in Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11350-11355. [PMID: 28332814 DOI: 10.1021/acsami.7b01404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metal nanoparticles such as Au, Ag, Pt, and so forth have been deposited on silicon by electroless deposition in the presence of hydrofluoric acid (HF) for applications such as oxygen reduction reaction, surface-enhanced Raman spectroscopy, as well as for lithium ion batteries. Here, we show an HF-free process wherein metals such as Sb and Ag could be deposited onto electrodeposited silicon in ionic liquids. We further show that, compared to electrodeposited silicon, Sb-modified Si demonstrates a better performance for lithium storage. The present study opens a new paradigm for the electroless deposition technique in ionic liquids for developing and modifying functional materials.
Collapse
Affiliation(s)
- Abhishek Lahiri
- Institute of Electrochemistry, Clausthal University of Technology , Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld, Germany
| | - Tianqi Lu
- Institute of Electrochemistry, Clausthal University of Technology , Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld, Germany
| | - Niklas Behrens
- Institute of Electrochemistry, Clausthal University of Technology , Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld, Germany
| | - Natalia Borisenko
- Institute of Electrochemistry, Clausthal University of Technology , Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld, Germany
| | - Guozhu Li
- Institute of Electrochemistry, Clausthal University of Technology , Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld, Germany
| | - Frank Endres
- Institute of Electrochemistry, Clausthal University of Technology , Arnold-Sommerfeld-Straße 6, D-38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
7
|
Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem Rev 2016; 116:14982-15034. [PMID: 28027647 DOI: 10.1021/acs.chemrev.6b00302] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.
Collapse
Affiliation(s)
- Yoon Hee Jang
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jin Jang
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seokhyoung Kim
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Li Na Quan
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kyungwha Chung
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Milla MJ, Barho F, González-Posada F, Cerutti L, Bomers M, Rodriguez JB, Tournié E, Taliercio T. Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures. NANOTECHNOLOGY 2016; 27:425201. [PMID: 27608135 DOI: 10.1088/0957-4484/27/42/425201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a detailed analysis of the influence of the doping level and nanoribbon width on the localized surface plasmon resonance (LSPR) by means of reflectance measurements. The plasmonic system, based on one-dimensional periodic gratings of highly Si-doped InAsSb/GaSb semiconductor nanostructures, is fabricated by a simple, accurate and large-area technique fabrication. Increasing the doping level blueshifts the resonance peak while increasing the ribbon width results in a redshift, as confirmed by numerical simulations. This provides an efficient means of fine-tuning the LSPR properties to a target purpose of between 8-20 μm (1250-500 cm(-1)). Finally, we show surface plasmon resonance sensing to absorbing polymer layers. We address values of the quality factor, sensitivity and figure of merit of 16 700 nm RIU(-1) and 2.5, respectively. These results demonstrate Si-doped InAsSb/GaSb to be a low-loss/high sensitive material making it very promising for the development of biosensing devices in the mid-infrared.
Collapse
Affiliation(s)
- M J Milla
- Univ. Montpellier, IES, UMR 5214, F-34000, Montpellier, France. CNRS, IES, UMR 5214, F-34000, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chou LW, Boyuk DS, Filler MA. Optically abrupt localized surface plasmon resonances in si nanowires by mitigation of carrier density gradients. ACS NANO 2015; 9:1250-1256. [PMID: 25612192 DOI: 10.1021/nn504974z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spatial control of carrier density is critical for engineering and exploring the interactions of localized surface plasmon resonances (LSPRs) in nanoscale semiconductors. Here, we couple in situ infrared spectral response measurements and discrete dipole approximation (DDA) calculations to show the impact of axially graded carrier density profiles on the optical properties of mid-infrared LSPRs supported by Si nanowires synthesized by the vapor-liquid-solid technique. The region immediately adjacent to each intentionally encoded resonator (i.e., doped segment) can exhibit residual carrier densities as high as 10(20) cm(-3), which strongly modifies both near- and far-field behavior. Lowering substrate temperature during the spacer segment growth reduces this residual carrier density and results in a spectral response that is indistinguishable from nanowires with ideal, atomically abrupt carrier density profiles. Our experiments have important implications for the control of near-field plasmonic phenomena in semiconductor nanowires, and demonstrate methods for determining and controlling axial dopant profile in these systems.
Collapse
Affiliation(s)
- Li-Wei Chou
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | |
Collapse
|
10
|
Christesen JD, Pinion CW, Zhang X, McBride JR, Cahoon JF. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst. ACS NANO 2014; 8:11790-11798. [PMID: 25363730 DOI: 10.1021/nn505404y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconductor nanowires (NWs) are often synthesized by the vapor-liquid-solid (VLS) mechanism, a process in which a liquid droplet-supplied with precursors in the vapor phase-catalyzes the growth of a solid, crystalline NW. By changing the supply of precursors, the NW composition can be altered as it grows to create axial heterostructures, which are applicable to a range of technologies. The abruptness of the heterojunction is mediated by the liquid catalyst, which can act as a reservoir of material and impose a lower limit on the junction width. Here, we demonstrate that this "reservoir effect" is not a fundamental limitation and can be suppressed by selection of specific VLS reaction conditions. For Au-catalyzed Si NWs doped with P, we evaluate dopant profiles under a variety of synthetic conditions using a combination of elemental imaging with energy-dispersive X-ray spectroscopy and dopant-dependent wet-chemical etching. We observe a diameter-dependent reservoir effect under most conditions. However, at sufficiently slow NW growth rates (≤250 nm/min) and low reactor pressures (≤40 Torr), the dopant profiles are diameter independent and radially uniform with abrupt, sub-10 nm axial transitions. A kinetic model of NW doping, including the microscopic processes of (1) P incorporation into the liquid catalyst, (2) P evaporation from the catalyst, and (3) P crystallization in the Si NW, quantitatively explains the results and shows that suppression of the reservoir effect can be achieved when P evaporation is much faster than P crystallization. We expect similar reaction conditions can be developed for other NW systems and will facilitate the development of NW-based technologies that require uniform and abrupt heterostructures.
Collapse
Affiliation(s)
- Joseph D Christesen
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | | | |
Collapse
|
11
|
Caldwell AH, Ha DH, Ding X, Robinson RD. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals. J Chem Phys 2014; 141:164125. [DOI: 10.1063/1.4897635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Andrew H. Caldwell
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Don-Hyung Ha
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Xiaoyue Ding
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Richard D. Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
|