1
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
2
|
Jeannette PL, Budimir ZL, Johnson LO, Parkinson EI. Biocatalytic Tetrapeptide Macrocyclization by Cryptic Penicillin-binding Protein-type Thioesterases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623930. [PMID: 39605408 PMCID: PMC11601455 DOI: 10.1101/2024.11.16.623930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cyclic tetrapeptides (CTPs) are a diverse class of natural products with a broad range of biological activities. However, they are extremely challenging to synthesize due to the ring strain associated with their small ring size. While chemical methods have been developed to access CTPs, they generally require the presence of certain amino acids, limiting their substrate scopes. Herein, we report the first bioinformatics guided discovery of a thioesterase from a cryptic biosynthetic gene cluster for peptide cyclization. Specifically, we hypothesized that predicted Penicillin-binding type thioesterases (PBP-TEs) from cryptic nonribosomal peptide synthetase gene clusters containing four adenylation domains would catalyze tetrapeptide cyclization. We found that one of the predicted PBP-TEs, WP516, efficiently cyclizes a wide variety of tetrapeptide substrates. To date, it is only the second stand-alone enzyme capable of cyclizing tetrapeptides, and its substrate scope greatly surpasses that of the only other reported tetrapeptide cyclase Ulm16. AlphaFold modeling and covalent docking were used to rationalize the broad substrate scope of WP516 in comparison to other PBP-TEs. Overall, the bioinformatics guided workflow outlined in this paper, and the discovery of WP516, represent promising tools for the biocatalytic production of head-to-tail CTPs, as well as a more general strategy for discovery of enzymes for peptide cyclization.
Collapse
Affiliation(s)
- Paisley L. Jeannette
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
| | - Zachary L. Budimir
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
| | - Lucas O. Johnson
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
| | - Elizabeth I. Parkinson
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906
| |
Collapse
|
3
|
Li D, Li C, Chen Q, Zhou H, Zhong Z, Huang Z, Liu H, Li X. Generalizing a Ligation Site at the N-Glycosylation Sequon for Chemical Synthesis of N-Linked Glycopeptides and Glycoproteins. J Am Chem Soc 2024; 146:29017-29027. [PMID: 39390739 DOI: 10.1021/jacs.4c09996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemical synthesis can generate homogeneous glycoproteins with well-defined and modifiable glycan structures at designated sites. The precision and flexibility of the chemical synthetic approach provide a solution to the heterogeneity problem of glycopeptides/glycoproteins obtained through biological approaches. In this study, we reported that the conserved N-glycosylation sequon (Asn-Xaa-Ser/Thr) of glycoproteins can serve as a general site for performing Ser/Thr ligation to achieve N-linked glycoprotein synthesis. We developed an N + 2 strategy to prepare the corresponding glycopeptide salicylaldehyde esters for Ser/Thr ligation and demonstrated that Ser/Thr ligation at the sequon was not affected by the steric hindrance brought about by the large-sized glycan structures. The effectiveness of this strategy was showcased by the total synthesis of the glycosylated receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Can Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qiushi Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR 999077, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zhixiang Zhong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Zirong Huang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
4
|
Fischle A, Lutsch M, Hübner F, Schäker-Hübner L, Schürmann L, Hansen FK, Kalinina SA. Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:51. [PMID: 39177677 PMCID: PMC11343938 DOI: 10.1007/s13659-024-00473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Apicidins are a class of naturally occurring cyclic tetrapeptides produced by few strains within the Fusarium genus. These secondary metabolites have gained significant attention due to their antiprotozoal activity through HDAC inhibition, thereby highlighting their potential for the treatment of malaria. Predominantly, apicidins have been isolated from Fusarium semitectum, offering a deep insight into the biosynthetic pathway responsible for their formation. A similar biosynthetic gene cluster has also been identified in the rice pathogenic fungus F. fujikuroi, leading the discovery of three additional apicidins through genetic manipulation. Routine mass spectrometric screening of these compound-producing strains revealed another metabolite structurally related to previously studied apicidins. By optimizing culture conditions and developing an effective isolation method, we obtained a highly pure substance, whose chemical structure was fully elucidated using NMR and HRMS fragmentation. Further studies were conducted to determine cytotoxicity, antimalarial activity, and HDAC inhibitory activity of this new secondary metabolite alongside the previously known apicidins. This work not only expands the apicidin class with a new member but also provides extensive insights and comparative analysis of apicidin-like substances produced by F. fujikuroi.
Collapse
Affiliation(s)
- Alica Fischle
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
- Graduate School of Natural Products, Corrensstraße 43, 48149, Münster, Germany
| | - Mika Lutsch
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An Der Immenburg 4, 53121, Bonn, Germany
| | - Lina Schürmann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An Der Immenburg 4, 53121, Bonn, Germany
| | - Svetlana A Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
- Graduate School of Natural Products, Corrensstraße 43, 48149, Münster, Germany.
| |
Collapse
|
5
|
Liu H, Chow HY, Liu J, Shi P, Li X. Prior disulfide bond-mediated Ser/Thr ligation. Chem Sci 2024:d4sc04825c. [PMID: 39170718 PMCID: PMC11333947 DOI: 10.1039/d4sc04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In this work, we developed a novel strategy, prior disulfide bond-mediated Ser/Thr ligation (PD-STL), for the chemical synthesis of peptides and proteins. This approach combines disulfide bond-forming chemistry with Ser/Thr ligation (STL), converting intermolecular STL into intramolecular STL to effectively proceed regardless of concentrations. We demonstrated the effectiveness of PD-STL under high dilution conditions, even for the relatively inert C-terminal proline at the ligation site. Additionally, we applied this method to synthesize the N-terminal cytoplasmic domain (2-104) of caveolin-1 and its Tyr14 phosphorylated form.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
6
|
Chen H, Zhang Y, Wen Y, Fan X, Sciolino N, Lin Y, Breindel L, Dai Y, Shekhtman A, Xue XS, Zhang Q. Production of constrained L-cyclo-tetrapeptides by epimerization-resistant direct aminolysis. Nat Commun 2024; 15:5372. [PMID: 38918367 PMCID: PMC11199569 DOI: 10.1038/s41467-024-49329-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
The synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation. We present a β-thiolactone framework that enables the synthesis of cyclo-tetrapeptides via direct aminolysis. This tactic utilizes a mechanism that restricts C-terminal carbonyl rotation while maintaining high reactivity, thereby enabling efficient head-to-tail amidation, reducing oligomerization, and preventing epimerization. A broad range of challenging cyclo-tetrapeptides ( > 20 examples) are synthesized in buffer and exhibits excellent tolerance toward nearly all proteinogenic amino acids. Previously unattainable macrocycles, such as cyclo-L-(Pro-Tyr-Pro-Val), have been produced and identified as μ-opioid receptor (MOR) agonists, with an EC50 value of 2.5 nM. Non-epimerizable direct aminolysis offers a practical solution for constrained peptide cyclization, and the discovery of MOR agonist activity highlights the importance of overcoming synthetic challenges for therapeutic development.
Collapse
Affiliation(s)
- Huan Chen
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Yuming Wen
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Xinhao Fan
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Nicholas Sciolino
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yanyun Lin
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Leonard Breindel
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Yuanwei Dai
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA.
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| | - Qiang Zhang
- Department of Chemistry, State University of New York, University at Albany, Albany, NY, 12222, USA.
| |
Collapse
|
7
|
Siebert A, Kazmaier U. Chemical Ligation-Mediated Total Synthesis of Corramycin. Org Lett 2024; 26:3169-3173. [PMID: 38564715 DOI: 10.1021/acs.orglett.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ligation-mediated total synthesis of corramycin, a myxobacterial natural product of the strain Corallococcus coralloides, is presented. The synthetic strategy included using two consecutive chemical ligations for a modular and efficient preparation. Finally, the synthesis employed a Ser/Thr ligation (STL) at a new ligation site combined with classical fragment coupling. This study provides the total synthesis of corramycin and enhances the preparative toolbox of STL in organic synthesis.
Collapse
Affiliation(s)
- Andreas Siebert
- Organic Chemistry I, Saarland University, Campus, Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus, Building C4.2, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus, C8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Chen H, Zhang Q. Native Peptide Cyclization, Sequential Chemoselective Amidation in Water. J Am Chem Soc 2023; 145:27218-27224. [PMID: 38079358 PMCID: PMC11131159 DOI: 10.1021/jacs.3c10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemical synthesis offers robust tactics for structural alterations of peptides and proteins. It remains a labor-intensive and complex process due to the challenges in selectively modifying diverse amino acid side chains and termini. Direct α-peptide ligation without premodification is a significant hurdle, especially when aiming to include all proteinogenic amino acids at the ligation site. We introduce Native Peptide Cyclization (NPC), a chemoselective method enabling intramolecular peptidyl ligation without the need for premodification. NPC cyclizes unprotected linear peptides through controlled, sequential C- and N-terminal activation via pH modulation. Water-based NPC simplifies peptide ligation, easing the labor-intensive nature of peptide synthesis, aiding efficient cyclic peptide preparation and enabling cost-effective macrocycle-based therapeutics.
Collapse
Affiliation(s)
- Huan Chen
- Department of Chemistry, State University of New York, University at Albany, Albany, New York 12222, United States
| | - Qiang Zhang
- Department of Chemistry, State University of New York, University at Albany, Albany, New York 12222, United States
| |
Collapse
|
9
|
Ma W, Liu H, Li X. Chemical Synthesis of Peptides and Proteins Bearing Base-Labile Post-Translational Modifications: Evolution of the Methods in Four Decades. Chembiochem 2023; 24:e202300348. [PMID: 37380612 DOI: 10.1002/cbic.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The S-palmitoylation on Cys residue and O-acetylation on Ser/Thr residues are two types of base-labile post-translational modifications (PTMs) in cells. The lability of these PTMs to bases and nucleophiles makes the peptides/proteins bearing S-palmitoyl or O-acetyl groups challenging synthetic targets, which cannot be prepared via the standard Fmoc-SPPS and native chemical ligation. In this review, we summarized the efforts towards their preparation in the past 40 years, with the focus on the evolution of synthetic methods.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
10
|
Lin S, Mo Z, Wang P, He C. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis. J Am Chem Soc 2023. [PMID: 37470345 DOI: 10.1021/jacs.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
With the growing popularity of serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) in chemical protein synthesis, facile and general approaches for the preparation of peptide salicylaldehyde (SAL) esters are urgently needed, especially those viable for obtaining expressed protein SAL esters. Herein, we report the access of SAL ester surrogates from peptide hydrazides (obtained either synthetically or recombinantly) via nitrite oxidation and phenolysis by 3-(1,3-dithian-2-yl)-4-hydroxybenzoic acid (SAL(-COOH)PDT). The resulting peptide SAL(-COOH)PDT esters can be activated to afford the reactive peptide SAL(-COOH) esters for subsequent STL/CPL. While being operationally simple for both synthetic peptides and expressed proteins, the current strategy facilitates convergent protein synthesis and combined application of STL with NCL. The generality of the strategy is showcased by the N-terminal ubiquitination of the growth arrest and DNA damage-inducible protein (Gadd45a), the efficient synthesis of ubiquitin-like protein 5 (UBL-5) via a combined N-to-C NCL-STL strategy, and the C-to-N semisynthesis of a myoglobin (Mb) variant.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Fumo VM, Roberts RC, Zhang J, O'Reilly MC. Diastereoselective synthesis of cyclic tetrapeptide pseudoxylallemycin A illuminates the impact of base during macrolactamization. Org Biomol Chem 2023; 21:1056-1069. [PMID: 36628602 PMCID: PMC11311250 DOI: 10.1039/d2ob02126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays.
Collapse
Affiliation(s)
- Vincent M Fumo
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| | - R Charlie Roberts
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| | - Jieyu Zhang
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| | - Matthew C O'Reilly
- Department of Chemistry, Villanova University, 800 E Lancaster Ave, Villanova, Pennsylvania 19085, USA.
| |
Collapse
|
12
|
Ma W, Wu H, Liu S, Wei T, Li XD, Liu H, Li X. Chemical Synthesis of Proteins with Base-Labile Posttranslational Modifications Enabled by a Boc-SPPS Based General Strategy Towards Peptide C-Terminal Salicylaldehyde Esters. Angew Chem Int Ed Engl 2023; 62:e202214053. [PMID: 36344442 DOI: 10.1002/anie.202214053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Chemical synthesis of proteins bearing base-labile post-translational modifications (PTMs) is a challenging task. For instance, O-acetylation and S-palmitoylation PTMs cannot survive Fmoc removal conditions during Fmoc-solid phase peptide synthesis (SPPS). In this work, we developed a new Boc-SPPS-based strategy for the synthesis of peptide C-terminal salicylaldehyde (SAL) esters, which are the key reaction partner in Ser/Thr ligation and Cys/Pen ligation. The strategy utilized the semicarbazone-modified aminomethyl (AM) resin, which could support the Boc-SPPS and release the peptide SAL ester upon treatment with TFA/H2 O and pyruvic acid. The non-oxidative aldehyde regeneration was fully compatible with all the canonical amino acids. Armed with this strategy, we finished the syntheses of the O-acetylated protein histone H3(S10ac, T22ac) and the hydrophobic S-palmitoylated peptide derived from caveolin-1.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Sha Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Xiang David Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Wills R, Adebomi V, Spancake C, Cohen RD, Raj M. Synthesis of L-cyclic tetrapeptides by backbone amide activation CyClick strategy. Tetrahedron 2022; 126:133071. [PMID: 37994371 PMCID: PMC10664817 DOI: 10.1016/j.tet.2022.133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cyclic tetrapeptides exhibit high cellular permeability and a wide range of biological properties and thus have gained great interest in the field of medicinal chemistry. We synthesized highly strained 12-membered head to tail cyclic peptides with varying reactive amino acids, without oligomerization using the exclusively intramolecular CyClick chemistry. This occurs by a two-step process involving the low-energy formation of a 15 atom-containing cyclic imine, followed by a chemoselective ring contraction of the peptide backbone generating a highly strained 12 atom-containing cyclic tetrapeptide. This reaction exhibited high substrate scope and generated head to tail cyclic tetrapeptides with varying amino acids at the N-terminus, showing chemoselectivity without the need for side group protection.
Collapse
Affiliation(s)
- Rachel Wills
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang KW. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 2022; 28:e3428. [PMID: 35610021 DOI: 10.1002/psc.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Discovering new antibiotics with novel chemical scaffolds and antibacterial mechanisms presents a challenge for medicinal scientists worldwide as the ever-increasing bacterial resistance poses a serious threat to human health. A new cyclic peptide-based antibiotic termed teixobactin was discovered from a screen of uncultured soil bacteria through iChip technology in 2015. Teixobactin exhibits excellent antibacterial activity against all the tested gram-positive pathogens and Mycobacterium tuberculosis, including drug-resistant strains. Given that teixobactin targets the highly conserved lipid II and lipid III, which induces the simultaneous inhibition of both peptidoglycan and teichoic acid synthesis, the emergence of resistance is considered to be rather difficult. The novel structure, potent antibacterial activity, and highly conservative targets make teixobactin a promising lead compound for further antibiotic development. This review provides a comprehensive treatise on the advances of teixobactin in the areas of discovery processes, antibacterial activity, mechanisms of action, chemical synthesis, and structural optimizations. The synthetic methods for the key building block l-allo-End, natural teixobactin, representative teixobactin analogues, as well as the structure-activity relationship studies will be highlighted and discussed in details. Finally, some insights into new trends for the generation of novel teixobactin analogues and tips for future work and directions will be commented.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ning-Ning Wei
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Cheng-Jian Pang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ke Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Zhao Q, Hsu HH, Savoie BM. Conformational Sampling for Transition State Searches on a Computational Budget. J Chem Theory Comput 2022; 18:3006-3016. [PMID: 35403426 DOI: 10.1021/acs.jctc.2c00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Hsuan-Hao Hsu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
16
|
Wang H, Guo Y, Luo Z, Gao L, Li R, Zhang Y, Kalaji HM, Qiang S, Chen S. Recent Advances in Alternaria Phytotoxins: A Review of Their Occurrence, Structure, Bioactivity and Biosynthesis. J Fungi (Basel) 2022; 8:jof8020168. [PMID: 35205922 PMCID: PMC8878860 DOI: 10.3390/jof8020168] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Alternaria is a ubiquitous fungal genus in many ecosystems, consisting of species and strains that can be saprophytic, endophytic, or pathogenic to plants or animals, including humans. Alternaria species can produce a variety of secondary metabolites (SMs), especially low molecular weight toxins. Based on the characteristics of host plant susceptibility or resistance to the toxin, Alternaria phytotoxins are classified into host-selective toxins (HSTs) and non-host-selective toxins (NHSTs). These Alternaria toxins exhibit a variety of biological activities such as phytotoxic, cytotoxic, and antimicrobial properties. Generally, HSTs are toxic to host plants and can cause severe economic losses. Some NHSTs such as alternariol, altenariol methyl-ether, and altertoxins also show high cytotoxic and mutagenic activities in the exposed human or other vertebrate species. Thus, Alternaria toxins are meaningful for drug and pesticide development. For example, AAL-toxin, maculosin, tentoxin, and tenuazonic acid have potential to be developed as bioherbicides due to their excellent herbicidal activity. Like altersolanol A, bostrycin, and brefeldin A, they exhibit anticancer activity, and ATX V shows high activity to inhibit the HIV-1 virus. This review focuses on the classification, chemical structure, occurrence, bioactivity, and biosynthesis of the major Alternaria phytotoxins, including 30 HSTs and 50 NHSTs discovered to date.
Collapse
Affiliation(s)
- He Wang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Yanjing Guo
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Zhi Luo
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Liwen Gao
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Rui Li
- Agricultural and Animal Husbandry Ecology and Resource Protection Center, Ordos Agriculture and Animal Husbandry Bureau, Ordos 017010, China;
| | - Yaxin Zhang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Shiguo Chen
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
- Correspondence: ; Tel.: +86-25-84395117
| |
Collapse
|
17
|
Complex cyclic peptide synthesis via serine/threonine ligation chemistry. Bioorg Med Chem Lett 2021; 54:128430. [PMID: 34757215 DOI: 10.1016/j.bmcl.2021.128430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
Non-ribosomal cyclic peptides are abundant in natural sources, exhibiting attractive bioactivities and favorable pharmacological properties. Furthermore, their structural complexity renders them as attractive synthetic targets. A general task for cyclic peptide synthesis is the peptide cyclization. Compared to the traditional dehydration-based peptide macrolactamization, chemoselective peptide ligation provides an alternative, sometimes advantageous, strategy to cyclize peptides. Herein, we provide a series of structurally complex cyclic peptide examples whose total syntheses were achieved via peptide ligation-mediated peptide cyclization. The special features of these strategies for achieving the total synthesis are highlighted.
Collapse
|
18
|
Abstract
AbstractOver the past more than ten years, my laboratory has been engaged in the total synthesis, medicinal chemistry, and chemical biology studies on daptomycin. Our efforts are expected to advance new understanding of this effective cyclic lipodepsipeptide antibiotic. In this Account, this long journey is presented.1 Introduction2 Total Synthesis of Daptomycin3 Medicinal Chemistry of Daptomycin4 Molecular Comparison of Daptomycin and Kynomycin5 New Insight into How Daptomycin Exerts Bactericidal Effect6 Conclusion
Collapse
|
19
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
20
|
Wang J, Lin D, Liu M, Liu H, Blasco P, Sun Z, Cheung YC, Chen S, Li X. Total Synthesis of Mannopeptimycin β via β-Hydroxyenduracididine Ligation. J Am Chem Soc 2021; 143:12784-12790. [PMID: 34352177 DOI: 10.1021/jacs.1c05922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonribosomal peptide synthesis in bacteria has endowed cyclic peptides with fascinating structural complexity via incorporating nonproteinogenic amino acids. These bioactive cyclic peptides provide interesting structural motifs for exploring total synthesis and medicinal chemistry studies. Cyclic glycopeptide mannopeptimycins exhibit antibacterial activity against antibiotic-resistant Gram-positive pathogens and act as the lipid II binder to stop bacterial cell wall biosynthesis. Here, we report a strategy streamlining solution phase-solid phase synthesis and chemical ligation-mediated peptide cyclization for the total synthesis of mannopeptimycin β.
Collapse
Affiliation(s)
- Jinzheng Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Du'an Lin
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yan Chu Cheung
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
21
|
Herlan CN, Sonnefeld A, Gloge T, Brückel J, Schlee LC, Muhle-Goll C, Nieger M, Bräse S. Macrocyclic Tetramers-Structural Investigation of Peptide-Peptoid Hybrids. Molecules 2021; 26:molecules26154548. [PMID: 34361700 PMCID: PMC8348019 DOI: 10.3390/molecules26154548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Anna Sonnefeld
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Thomas Gloge
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Julian Brückel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Luisa Chiara Schlee
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
22
|
Cheung CHP, Xu J, Lee CL, Zhang Y, Wei R, Bierer D, Huang X, Li X. Construction of diverse peptide structural architectures via chemoselective peptide ligation. Chem Sci 2021; 12:7091-7097. [PMID: 34123337 PMCID: PMC8153220 DOI: 10.1039/d1sc01174j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022] Open
Abstract
Herein, we report the development of a facile synthetic strategy for constructing diverse peptide structural architectures via chemoselective peptide ligation. The key advancement involved is to utilize the benzofuran moiety as the peptide salicylaldehyde ester surrogate, and Dap-Ser/Lys-Ser dipeptide as the hydroxyl amino functionality, which could be successfully introduced at the side chain of peptides enabling peptide ligation. With this method, the side chain-to-side chain cyclic peptide, branched/bridged peptides, tailed cyclic peptides and multi-cyclic peptides have been designed and successfully synthesized with native peptidic linkages at the ligation sites. This strategy has provided an alternative strategic opportunity for synthetic peptide development. It also serves as an inspiration for the structural design of PPI inhibitors with new modalities.
Collapse
Affiliation(s)
- Carina Hey Pui Cheung
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Hong Kong
| | - Jianchao Xu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Hong Kong
| | - Chi Lung Lee
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Hong Kong
| | - Yanfeng Zhang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Hong Kong
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Hong Kong
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG Aprather Weg 18A 42096 Wuppertal Germany
| | - Xuhui Huang
- Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Hong Kong
| |
Collapse
|
23
|
Shang J, Thombare VJ, Charron CL, Wille U, Hutton CA. Ring Expansion of Thiolactams via Imide Intermediates: An Amino Acid Insertion Strategy. Chemistry 2021; 27:1620-1625. [PMID: 33289186 DOI: 10.1002/chem.202005035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/22/2022]
Abstract
The AgI -promoted reaction of thiolactams with N-Boc amino acids yields an N-(α-aminoacyl) lactam that can rearrange through an acyl transfer process. Boc-deprotection results in convergence to the ring-expanded adduct, thereby facilitating an overall insertion of an amino acid into the thioamide bond to generate medium-sized heterocycles. Application to the site-specific insertion of amino acids into cyclic peptides is demonstrated.
Collapse
Affiliation(s)
- Jing Shang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Varsha J Thombare
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Carlie L Charron
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Uta Wille
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
24
|
Tan Y, Wu H, Wei T, Li X. Chemical Protein Synthesis: Advances, Challenges, and Outlooks. J Am Chem Soc 2020; 142:20288-20298. [PMID: 33211477 DOI: 10.1021/jacs.0c09664] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contemporary chemical protein synthesis has been dramatically advanced over the past few decades, which has enabled chemists to reach the landscape of synthetic biomacromolecules. Chemical synthesis can produce synthetic proteins with precisely controlled structures which are difficult or impossible to obtain via gene expression systems. Herein, we summarize the key enabling ligation technologies, major strategic developments, and some selected representative applications of synthetic proteins and provide an outlook for future development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| |
Collapse
|
25
|
Raj M, Wills RD, Adebomi VT. Peptide Cyclization at High Concentration. Synlett 2020. [DOI: 10.1055/s-0040-1707165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The emergence of cyclic peptides as pharmaceuticals has led to an eruption of new methodologies for macrocyclization. However, the cyclization of peptides at high concentrations presents a challenge due to the production of side products like dimers and oligomers. This factor is more pronounced with the cyclization of peptides composed of fewer than seven amino acids, thus has created a need for a new synthetic strategy. Herein, we will elucidate a new chemoselective method termed ‘CyClick’ that works in an exclusively intramolecular fashion preventing the formation of commonly occurring side products such as dimers and oligomers, even at relatively high concentration.1 Introduction2 Known Methodologies3 Novel CyClick Chemistry4 Conclusion and Outlook
Collapse
Affiliation(s)
- Monika Raj
- Department of Chemistry and Biochemistry, Auburn University Auburn
| | | | | |
Collapse
|
26
|
Wills R, Adebomi V, Raj M. Site-Selective Peptide Macrocyclization. Chembiochem 2020; 22:52-62. [PMID: 32794268 DOI: 10.1002/cbic.202000398] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Cyclized peptides have seen a rise in popularity in the pharmaceutical industry as drug molecules. As such, new macrocyclization methodologies have become abundant in the last several decades. However, efficient methods of cyclization without the formation of side products remain a great challenge. Herein, we review cyclization approaches that focus on site-selective chemistry. Site selectivity in macrocyclization decreases the generation of side products, leading to a greater yield of the desired peptide macrocycles. We will also take an in-depth look at the new exclusively intramolecular N-terminal site-selective CyClick strategy for the synthesis of cyclic peptides. The CyClick method uses imine formation between an aldehyde and the N terminus. The imine is then trapped by a nucleophilic attack from the second amidic nitrogen in an irreversible site-selective fashion.
Collapse
Affiliation(s)
- Rachel Wills
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Victor Adebomi
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Hossain I, Schmidt JAR. Nickel(II) Catalyzed Hydroboration: A Route to Selective Reduction of Aldehydes and
N
‐Allylimines. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Istiak Hossain
- Department of Chemistry and Biochemistry School of Green Chemistry and Engineering College of Natural Sciences and Mathematics The University of Toledo 2801 W. Bancroft St. MS 602 43606‐3390 Toledo Ohio USA
| | - Joseph A. R. Schmidt
- Department of Chemistry and Biochemistry School of Green Chemistry and Engineering College of Natural Sciences and Mathematics The University of Toledo 2801 W. Bancroft St. MS 602 43606‐3390 Toledo Ohio USA
| |
Collapse
|
28
|
Huang DL, Li Y, Liang J, Yu L, Xue M, Cao XX, Xiao B, Tian CL, Liu L, Zheng JS. The New Salicylaldehyde S,S-Propanedithioacetal Ester Enables N-to-C Sequential Native Chemical Ligation and Ser/Thr Ligation for Chemical Protein Synthesis. J Am Chem Soc 2020; 142:8790-8799. [DOI: 10.1021/jacs.0c01561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong-Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ying Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jun Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Min Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiu-Xiu Cao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Lin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
29
|
Adebomi V, Cohen RD, Wills R, Chavers HAH, Martin GE, Raj M. CyClick Chemistry for the Synthesis of Cyclic Peptides. Angew Chem Int Ed Engl 2019; 58:19073-19080. [DOI: 10.1002/anie.201911900] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Victor Adebomi
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Ryan D. Cohen
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Rachel Wills
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | | | - Gary E. Martin
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Monika Raj
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| |
Collapse
|
30
|
Adebomi V, Cohen RD, Wills R, Chavers HAH, Martin GE, Raj M. CyClick Chemistry for the Synthesis of Cyclic Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Victor Adebomi
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Ryan D. Cohen
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Rachel Wills
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | | | - Gary E. Martin
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Monika Raj
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| |
Collapse
|
31
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Sarojini V, Cameron AJ, Varnava KG, Denny WA, Sanjayan G. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chem Rev 2019; 119:10318-10359. [PMID: 31418274 DOI: 10.1021/acs.chemrev.8b00737] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides possess a wide range of biological properties and unique structures that make them attractive to scientists working in a range of areas from medicinal to materials chemistry. However, cyclic tetrapeptides (CTPs), which are important members of this family, are notoriously difficult to synthesize. Various synthetic methodologies have been developed that enable access to natural product CTPs and their rationally designed synthetic analogues having novel molecular structures. These methodologies include the use of reversible protecting groups such as pseudoprolines that restrict conformational freedom, ring contraction strategies, on-resin cyclization approaches, and optimization of coupling reagents and reaction conditions such as temperature and dilution factors. Several fundamental studies have documented the impacts of amino acid configurations, N-alkylation, and steric bulk on both synthetic success and ensuing conformations. Carefully executed retrosynthetic ring dissection and the unique structural features of the linear precursor sequences that result from the ring dissection are crucial for the success of the cyclization step. Other factors that influence the outcome of the cyclization step include reaction temperature, solvent, reagents used as well as dilution levels. The purpose of this review is to highlight the current state of affairs on naturally occurring and rationally designed cyclic tetrapeptides, including strategies investigated for their syntheses in the literature, the conformations adopted by these molecules, and specific examples of their function. Using selected examples from the literature, an in-depth discussion of the synthetic techniques and reaction parameters applied for the successful syntheses of 12-, 13-, and 14-membered natural product CTPs and their novel analogues are presented, with particular focus on the cyclization step. Selected examples of the three-dimensional structures of cyclic tetrapeptides studied by NMR, and X-ray crystallography are also included.
Collapse
Affiliation(s)
- Vijayalekshmi Sarojini
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| | - Alan J Cameron
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | - Kyriakos G Varnava
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | | | - Gangadhar Sanjayan
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India
| |
Collapse
|
33
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
34
|
Liu H, Liu H, Li X. Use of Serine/Threonine Ligation for the Total Chemical Synthesis of HMGA1a Protein with Site‐Specific Lysine Acetylations. Chempluschem 2019; 84:779-785. [DOI: 10.1002/cplu.201900130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Heng Liu
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Han Liu
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry State Key Laboratory of Synthetic ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
35
|
Thombare VJ, Hutton CA. Rapid, Traceless, Ag
I
‐Promoted Macrocyclization of Peptides Possessing an N‐Terminal Thioamide. Angew Chem Int Ed Engl 2019; 58:4998-5002. [DOI: 10.1002/anie.201900243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Varsha J. Thombare
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Victoria 3010 Australia
| | - Craig A. Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Victoria 3010 Australia
| |
Collapse
|
36
|
Thombare VJ, Hutton CA. Rapid, Traceless, Ag
I
‐Promoted Macrocyclization of Peptides Possessing an N‐Terminal Thioamide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Varsha J. Thombare
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Victoria 3010 Australia
| | - Craig A. Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Victoria 3010 Australia
| |
Collapse
|
37
|
Arbour CA, Belavek KJ, Tariq R, Mukherjee S, Tom JK, Isidro-Llobet A, Kopach ME, Stockdill JL. Bringing Macrolactamization Full Circle: Self-Cleaving Head-to-Tail Macrocyclization of Unprotected Peptides via Mild N-Acyl Urea Activation. J Org Chem 2018; 84:1035-1041. [DOI: 10.1021/acs.joc.8b02418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Christine A. Arbour
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kayla J. Belavek
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rooha Tariq
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Subha Mukherjee
- Bristol-Myers Squibb, Chemical and Synthetic Development, New Brunswick, New Jersey 08903, United States
| | - Janine K. Tom
- Amgen, Inc., Pivotal Drug Substance Process Development, Thousand Oaks, California 91320, United States
| | | | | | - Jennifer L. Stockdill
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
38
|
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem 2018; 14:24-51. [PMID: 30394699 DOI: 10.1002/cmdc.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022]
Abstract
In the last few decades, peptides have been victorious over small molecules as therapeutics due to their broad range of applications, high biological activity, and high specificity. However, the main challenges to overcome if peptides are to become effective drugs is their low oral bioavailability and instability under physiological conditions. Cyclic peptides play a vital role in this context because they show higher stability under physiological conditions, higher membrane permeability, and greater oral bioavailability than that of their corresponding linear analogues. In this regard, cyclic antimicrobial peptides (AMPs) have gained considerable attention in the field of novel antibiotic development. Bacterial strains produce cyclic AMPs through two pathways: ribosomal and nonribosomal. This review provides an overview of the chemical classification of cyclic AMPs isolated from bacteria, and provides a description of their biological activity and mode of action.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 12321, Egypt
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
39
|
de Assis FF, Huang X, Akiyama M, Pilli RA, Meggers E. Visible-Light-Activated Catalytic Enantioselective β-Alkylation of α,β-Unsaturated 2-Acyl Imidazoles Using Hantzsch Esters as Radical Reservoirs. J Org Chem 2018; 83:10922-10932. [PMID: 30028138 DOI: 10.1021/acs.joc.8b01588] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and practical method for the enantioselective β-functionalization of α,β-unsaturated 2-acyl imidazoles is described. The method uses a previously devised chiral-at-metal rhodium catalyst (Λ-RhS, 4 mol %) along with Hantzsch ester derivatives as alkyl radical sources. The rhodium complex exerts a dual role as the visible-light-absorbing unit upon substrate binding and as the asymmetric catalyst. The method provides up to quantitative yields with excellent enantioselectivities up to 98% ee and can be classified as a redox-neutral, electron-transfer-catalyzed reaction.
Collapse
Affiliation(s)
- Francisco F de Assis
- Instituto de Química, Universidade Estadual de Campinas , Campinas , Sao Paulo 13084-971 , Brazil.,Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35043 Marburg , Germany
| | - Xiaoqiang Huang
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35043 Marburg , Germany
| | - Midori Akiyama
- Department of Chemistry & Biotechnology, Graduate School of Engineering , The University of Tokyo , Tokyo , Japan
| | - Ronaldo A Pilli
- Instituto de Química, Universidade Estadual de Campinas , Campinas , Sao Paulo 13084-971 , Brazil
| | - Eric Meggers
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35043 Marburg , Germany
| |
Collapse
|
40
|
Abstract
Synthetic proteins are expected to go beyond the boundary of recombinant DNA expression systems by being flexibly installed with site-specific natural or unnatural modification structures during synthesis. To enable protein chemical synthesis, peptide ligations provide effective strategies to assemble short peptide fragments obtained from solid-phase peptide synthesis (SPPS) into long peptides and proteins. In this regard, chemoselective peptide ligation represents a simple but powerful transformation realizing selective amide formation between the C-terminus and N-terminus of two side-chain-unprotected peptide fragments. These reactions are highly chemo- and regioselective to tolerate the side-chain functionalities present on the unprotected peptides, highly reactive to work with millmolar or submillimolar concentrations of the substrates, and operationally simple with mild conditions and accessible building blocks. This Account focuses on our work in the development of serine/threonine ligation (STL), which originates from a chemoselective reaction between an unprotected peptide with a C-terminal salicylaldehyde (SAL) ester and another unprotected peptide with an N-terminal serine or threonine residue. Mechanistically, STL involves imine capture, 5- endo-trig ring-chain tautomerization, O-to- N [1,5] acyl transfer to afford the N, O-benzylidene acetal-linked peptide, and acidolysis to regenerate the Xaa-Ser/Thr linkage (where Xaa is the amino acid) at the ligation site. The high abundance of serine and threonine residues (12.7%) in naturally occurring proteins and the good compatibility of STL with various C-terminal residues provide multiple choices for ligation sites. The requisite peptide C-terminal SAL esters can be prepared from the peptide fragments obtained from both Fmoc-SPPS and Boc-SPPS through four available methods (a safety-catch strategy based on phenolysis, direct coupling, ozonolysis, and the n + 1 strategy). In the synthesis of proteins (e.g., ACYP enzyme, MUC1 glycopeptide 40-mer to 80-mer, interleukin 25, and HMGA1a with variable post-translational modification patterns), both C-to- N and N-to- C sequential STL strategies have been developed through selection of temporal N-terminal protecting groups and proper design of the switch-on/off C-terminal SAL ester surrogate, respectively. In the synthesis of cyclic peptide natural products (e.g., daptomycin, teixobactin, cyclomontanin B, yunnanin C) and their analogues, intramolecular head-to-tail STL has been implemented on linear peptide SAL ester precursors containing four to 10 amino acid residues with good efficiency and minimized oligomerization. As a thiol-independent chemoselective ligation complementary to native chemical ligation, STL provides an alternative tool for the chemical synthesis of homogeneous proteins with site-specific and structure-defined modifications and cyclic peptide natural products, which lays foundation for chemical biology and medicinal studies of those molecules with biological importance and therapeutic potential.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
41
|
Xu C, Xu J, Liu H, Li X. Development of aspartic acid ligation for peptide cyclization derived from serine/threonine ligation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Synthesis and antibacterial studies of teixobactin analogues with non-isostere substitution of enduracididine. Bioorg Med Chem 2018; 26:1062-1068. [DOI: 10.1016/j.bmc.2018.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
|
43
|
Shimodaira S, Takei T, Hojo H, Iwaoka M. Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem Commun (Camb) 2018; 54:11737-11740. [DOI: 10.1039/c8cc06805d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic selenocysteine-containing peptides were synthesized via one-pot tandem conversion of N-alkylcysteine-containing selenopeptides.
Collapse
Affiliation(s)
- Shingo Shimodaira
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| | - Toshiki Takei
- Institute for Protein Research, Osaka University
- Yamadaoka
- Suita-shi
- Osaka 565-0871
- Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University
- Yamadaoka
- Suita-shi
- Osaka 565-0871
- Japan
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| |
Collapse
|
44
|
Abstract
The development of efficient methods for the synthesis of cyclic peptides is of interest because of the many potential applications of this class of molecule. Pseudoprolines are derived from serine, threonine, and cysteine and can be used as traceless turn-inducers to facilitate the cyclization of a wide range of linear peptide precursors. The incorporation of a pseudoproline into the peptide to be cyclized generally results in a cyclization reaction that proceeds more quickly and with higher yield than that of an analogous sequence without the pseudoproline. Installation of a pseudoproline at the C-terminal position of a linear peptide sequence has also been shown to eliminate any epimerization of this residue during the reaction. Following pseudoproline-mediated cyclization, these turn-inducers can be removed on treatment with acid in a similar manner to other protecting groups to provide the native peptide sequence, and in the case of cysteine-derived pseudoprolines, the resulting cysteine can be readily converted into alanine through desulfurization. These traceless turn-inducers have been successfully used in the synthesis of cyclic peptides containing either serine, threonine, cysteine or alanine residues.
Collapse
|
45
|
Synthesis and structure-activity relationship of teixobactin analogues via convergent Ser ligation. Bioorg Med Chem 2017; 25:4990-4995. [DOI: 10.1016/j.bmc.2017.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 11/17/2022]
|
46
|
Yang J, Zhao J. Recent developments in peptide ligation independent of amino acid side-chain functional group. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9056-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Xin D, Jeffries A, Burgess K. Interplay Of Stereochemistry, Conformational Rigidity, And Ease Of Synthesis For 13-Membered Cyclic Peptidomimetics Containing APC Residues. ACS COMBINATORIAL SCIENCE 2017; 19:414-421. [PMID: 28561582 DOI: 10.1021/acscombsci.7b00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of a program to design small molecules that bind proteins, we require cyclic peptides (or peptidomimetics) that are severely constrained such that they adopt one predominant conformation in solution. This paper describes syntheses of the 13-membered cyclic tetrapeptides 1 containing aminopyrrolidine carboxyl (APC) residues. A linear precursor was prepared and used to determine optimal conditions for cyclization of that substrate. A special linker was prepared to enable cyclization of similar linear peptidomimetics on a solid phase, and the solution-phase cyclization conditions were shown to be appropriate for this too. Stereochemical variations were then used to determine the ideal APC configuration for cyclization of the linear precursors (on a solid phase, using the conditions identified previously). Consequently, a series of compounds were prepared that are representative of compounds 1. Conformational studies of representative compounds in DMSO solution were performed primarily using (i) NOE studies, (ii) quenched molecular dynamics simulations using no constraints from experiment, and (iii) MacroModel calculations with NMR constraints. All three strategies converged to the same conclusion: the backbone of molecules based on 1 tends to adopt one preferential conformation in solution and that conformation can be predicted from the stereochemistries of the α-amino acids involved.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Andrew Jeffries
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
48
|
Zhou K, Chen D, Li B, Zhang B, Miao F, Zhou L. Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection. PLoS One 2017; 12:e0176189. [PMID: 28423022 PMCID: PMC5397049 DOI: 10.1371/journal.pone.0176189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
A series of cinnamic acid esters and their derivatives were synthesized and evaluated for antifungal activities in vitro against four plant pathogenic fungi by using the mycelium growth rate method. Structure−activity relationship was derived also. Almost all of the compounds showed some inhibition activity on each of the fungi at 0.5 mM. Eight compounds showed the higher average activity with average EC50 values of 17.4–28.6 μg/mL for the fungi than kresoxim-methyl, a commercial fungicide standard, and ten compounds were much more active than commercial fungicide standards carbendazim against P. grisea or kresoxim-methyl against both P. grisea and Valsa mali. Compounds C1 and C2 showed the higher activity with average EC50 values of 17.4 and 18.5 μg/mL and great potential for development of new plant antifungal agents. The structure−activity relationship analysis showed that both the substitution pattern of the phenyl ring and the alkyl group in the alcohol moiety significantly influences the activity. There exists complexly comprehensive effect between the substituents on the phenyl ring and the alkyl group in the alcohol moiety on the activity. Thus, cinnamic acid esters showed great potential the development of new antifungal agents for plant protection due to high activity, natural compounds or natural compound framework, simple structure, easy preparation, low-cost and environmentally friendly.
Collapse
Affiliation(s)
- Kun Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Dongdong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Bin Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Bingyu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Fang Miao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail: (LZ); (FM)
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- * E-mail: (LZ); (FM)
| |
Collapse
|
49
|
Lee CL, Liu H, Wong CTT, Chow HY, Li X. Enabling N-to-C Ser/Thr Ligation for Convergent Protein Synthesis via Combining Chemical Ligation Approaches. J Am Chem Soc 2016; 138:10477-84. [DOI: 10.1021/jacs.6b04238] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chi Lung Lee
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Han Liu
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Clarence T. T. Wong
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hoi Yee Chow
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xuechen Li
- Department of Chemistry,
The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
50
|
Jin K, Sam IH, Po KHL, Lin D, Ghazvini Zadeh EH, Chen S, Yuan Y, Li X. Total synthesis of teixobactin. Nat Commun 2016; 7:12394. [PMID: 27484680 PMCID: PMC4976201 DOI: 10.1038/ncomms12394] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/29/2016] [Indexed: 11/24/2022] Open
Abstract
To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product. Teixobactin is a recently identified antibiotic that shows activity against drug resistant strains of bacteria. Here, the authors report a highly convergent total synthesis of this natural product, with sufficient flexibility to also allow the synthesis of a number of analogues.
Collapse
Affiliation(s)
- Kang Jin
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Iek Hou Sam
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kathy Hiu Laam Po
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Du'an Lin
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ebrahim H Ghazvini Zadeh
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, USA
| | - Sheng Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, USA
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|