1
|
Khandave NP, Tiwari VP, Vallurupalli P. Using the amide 15N CEST NMR experiment to study slow exchange between 'visible' protein states. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 375:107883. [PMID: 40311447 DOI: 10.1016/j.jmr.2025.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Slow exchange between 'visible' protein states is often studied using the two-dimensional ZZ exchange class of magnetisation transfer experiments. However, the cross-peaks that arise due to magnetisation transfer between different states can lead to additional overlap in the two-dimensional ZZ exchange NMR spectrum. To overcome this overlap problem, here we have explored the utility of the 15N CEST experiment as an alternative to the 1HN-15N ZZ exchange experiment to study exchange between 'visible' protein states. In the case of two-state exchange, the 1HN-15N correlation map contains two correlations for each exchanging site, one arising from each state. Thus, two 15N CEST profiles can be recorded for each of these sites using a single 15N CEST experiment. We find that site-specific exchange parameters can then be obtained by simultaneously analysing both these 15N CEST profiles recorded at a single 'high' B1 field supplemented with experimentally derived information regarding the initial magnetisation or as in the case of the ZZ exchange experiment, the minor state population. The utility of the 15N CEST based approach to characterise exchange between visible protein states is demonstrated by studying the interconversion of the ∼18 kDa T34A mutant of T4 lysozyme between its native state and a minor state populated to ∼21 % (exchange rate ∼5 s-1) at 40 °C.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
2
|
Kasai T, Kigawa T. Autonomous adaptive optimization of NMR experimental conditions for precise inference of minor conformational states of proteins based on chemical exchange saturation transfer. PLoS One 2025; 20:e0321692. [PMID: 40378160 DOI: 10.1371/journal.pone.0321692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 05/18/2025] Open
Abstract
In scientific experiments where measurement sensitivity is a major limiting factor, the optimization of experimental conditions, such as measurement parameters, is essential to maximize the information obtained per unit time and the number of experiments performed. When optimization in advance is not possible because of limited prior knowledge of the system, autonomous, adaptive optimization must be implemented during the experiment. One approach to this involves sequential Bayesian optimal experimental design, which adopts mutual information as the utility function to be maximized. In this study, we applied this optimization method to the chemical exchange saturation transfer (CEST) experiment in nuclear magnetic resonance (NMR) spectroscopy, which is used to study minor but functionally important invisible states of certain molecules, such as proteins. Adaptive optimization was utilized because prior knowledge of minor states is limited. To this end, we developed an adaptive optimization system of 15N-CEST experimental conditions for proteins using Markov chain Monte Carlo (MCMC) to calculate the posterior distribution and utility function. To ensure the completion of MCMC computations within a reasonable period with sufficient precision, we developed a second-order approximation of the CEST forward model. Both simulations and actual measurements using the FF domain of the HYPA/FBP11 protein with the A39G mutation demonstrated that the adaptive method outperformed the conventional one in terms of estimation precision of minor-state parameters based on equal numbers of measurements. Because the algorithm used for the evaluation of the utility function is independent of the type of experiment, the proposed method can be applied to various spectroscopic measurements in addition to NMR, if the forward model or its approximation can be calculated sufficiently quickly.
Collapse
Affiliation(s)
- Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Research DX Foundation Team, TRIP Headquarters, RIKEN, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- NMR Operation Team, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Jain S, Sekhar A. Transient excited states of the metamorphic protein Mad2 and their implications for function. Proteins 2025; 93:302-319. [PMID: 38221646 PMCID: PMC7616478 DOI: 10.1002/prot.26667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
The spindle checkpoint complex is a key surveillance mechanism in cell division that prevents premature separation of sister chromatids. Mad2 is an integral component of this spindle checkpoint complex that recognizes cognate substrates such as Mad1 and Cdc20 in its closed (C-Mad2) conformation by fastening a "seatbelt" around short peptide regions that bind to the substrate recognition site. Mad2 is also a metamorphic protein that adopts not only the fold found in C-Mad2, but also a structurally distinct open conformation (O-Mad2) which is incapable of binding substrates. Here, we show using chemical exchange saturation transfer (CEST) and relaxation dispersion (CPMG) NMR experiments that Mad2 transiently populates three other higher free energy states with millisecond lifetimes, two in equilibrium with C-Mad2 (E1 and E2) and one with O-Mad2 (E3). E1 is a mimic of substrate-bound C-Mad2 in which the N-terminus of one C-Mad2 molecule inserts into the seatbelt region of a second molecule of C-Mad2, providing a potential pathway for autoinhibition of C-Mad2. E2 is the "unbuckled" conformation of C-Mad2 that facilitates the triage of molecules along competing fold-switching and substrate binding pathways. The E3 conformation that coexists with O-Mad2 shows fluctuations at a hydrophobic lock that is required for stabilizing the O-Mad2 fold and we hypothesize that E3 represents an early intermediate on-pathway towards conversion to C-Mad2. Collectively, the NMR data highlight the rugged free energy landscape of Mad2 with multiple low-lying intermediates that interlink substrate-binding and fold-switching, and also emphasize the role of molecular dynamics in its function.
Collapse
Affiliation(s)
- Shefali Jain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
4
|
Khandave NP, Hansen DF, Vallurupalli P. Increasing the accuracy of exchange parameters reporting on slow dynamics by performing CEST experiments with 'high' B 1 fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107699. [PMID: 38851059 DOI: 10.1016/j.jmr.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
Over the last decade chemical exchange saturation transfer (CEST) NMR methods have emerged as powerful tools to characterize biomolecular conformational dynamics occurring between a visible major state and 'invisible' minor states. The ability of the CEST experiment to detect these minor states, and provide precise exchange parameters, hinges on using appropriate B1 field strengths during the saturation period. Typically, a pair of B1 fields with ω1 (=2πB1) values around the exchange rate kex are chosen. Here we show that the transverse relaxation rate of the minor state resonance (R2,B) also plays a crucial role in determining the B1 fields that lead to the most informative datasets. Using [Formula: see text] ≥ kex, to guide the choice of B1, instead of kex, leads to data wherefrom substantially more accurate exchange parameters can be derived. The need for higher B1 fields, guided by K, is demonstrated by studying the conformational exchange in two mutants of the 71 residue FF domain with kex ∼ 11 s-1 and ∼ 72 s-1, respectively. In both cases analysis of CEST datasets recorded using B1 field values guided by kex lead to imprecise exchange parameters, whereas using B1 values guided by K resulted in precise site-specific exchange parameters. The conclusions presented here will be valuable while using CEST to study slow processes at sites with large intrinsic relaxation rates, including carbonyl sites in small to medium sized proteins, amide 15N sites in large proteins and when the minor state dips are broadened due to exchange among the minor states.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; The Francis Crick Institute, London, NW1 1BF, United Kingdom.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
5
|
Tiwari VP, De D, Thapliyal N, Kay LE, Vallurupalli P. Beyond slow two-state protein conformational exchange using CEST: applications to three-state protein interconversion on the millisecond timescale. JOURNAL OF BIOMOLECULAR NMR 2024; 78:39-60. [PMID: 38169015 DOI: 10.1007/s10858-023-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide 15N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although 15N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, 15N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of 15N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( k e x , F I 1 ~ 550 s-1, k e x , F I 2 ~ 1200 s-1, k e x , I 1 I 2 ~ 5000 s-1), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Debajyoti De
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Nemika Thapliyal
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
6
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
7
|
Overbeck JH, Vögele J, Nussbaumer F, Duchardt‐Ferner E, Kreutz C, Wöhnert J, Sprangers R. 19F NMR Untersuchung des Konformationsaustauschs mehrerer Zustände im synthetischen Neomycin-bindenden Riboschalter. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202218064. [PMID: 38516132 PMCID: PMC10953372 DOI: 10.1002/ange.202218064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 03/29/2023]
Abstract
AbstractDer synthetische Neomycin‐bindende Riboschalter interagiert mit seinem Liganden Neomycin sowie mit den verwandten Antibiotika Ribostamycin und Paromomycin. Die Bindung dieser Aminoglykoside induziert sehr ähnliche Grundzustandsstrukturen in der RNA, allerdings kann nur Neomycin die Initiierung der Translation effizient unterdrücken. Der molekulare Ursprung dieser Unterschiede wurde auf Unterschiede in der Dynamik der Ligand‐Riboschalter‐Komplexe zurückgeführt. In diesem Artikel kombinieren wir fünf komplementäre fluorbasierte NMR‐Methoden, um die Dynamik der drei Riboschalter‐Komplexe im Sekunden‐ bis Mikrosekundenbereich genau zu quantifizieren. Unsere Daten offenbaren komplexe Austauschprozesse mit bis zu vier strukturell unterschiedlichen Zuständen. Wir interpretieren unsere Ergebnisse in einem Modell, das ein Zusammenspiel zwischen verschiedenen chemischen Gruppen in den Antibiotika und spezifischen Basen im Riboschalter zeigt. Allgemeiner unterstreichen unsere Daten das Potenzial von 19F NMR‐Methoden, komplexe Austauschprozesse mit mehreren angeregten Zuständen zu charakterisieren.
Collapse
Affiliation(s)
- Jan H. Overbeck
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgDeutschland
| | - Jennifer Vögele
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Deutschland
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckÖsterreich
| | - Elke Duchardt‐Ferner
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Deutschland
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckÖsterreich
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Deutschland
| | - Remco Sprangers
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgDeutschland
| |
Collapse
|
8
|
Overbeck JH, Vögele J, Nussbaumer F, Duchardt‐Ferner E, Kreutz C, Wöhnert J, Sprangers R. Multi-Site Conformational Exchange in the Synthetic Neomycin-Sensing Riboswitch Studied by 19 F NMR. Angew Chem Int Ed Engl 2023; 62:e202218064. [PMID: 36970768 PMCID: PMC10952710 DOI: 10.1002/anie.202218064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of 19 F NMR methods to characterize complex exchange processes with multiple excited states.
Collapse
Affiliation(s)
- Jan H. Overbeck
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgGermany
| | - Jennifer Vögele
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Elke Duchardt‐Ferner
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Remco Sprangers
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgGermany
| |
Collapse
|
9
|
Lu Y, Yang GZ, Yang D. Effects of ligand binding on dynamics of fatty acid binding protein and interactions with membranes. Biophys J 2022; 121:4024-4032. [PMID: 36196055 PMCID: PMC9675020 DOI: 10.1016/j.bpj.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Intracellular transport of fatty acids involves binding of ligands to their carrier fatty acid binding proteins (FABPs) and interactions of ligand-free and -bound FABPs with membranes. Previous studies focused on ligand-free FABPs. Here, our amide hydrogen exchange data showed that oleic acid binding to human intestinal FABP (hIFABP) stabilizes the protein, most likely through enhancing the hydrogen-bonding network, and induces rearrangement of sidechains even far away from the ligand binding site. Using NMR relaxation techniques, we found that the ligand binding affects not only conformational exchanges between major and minor states but also the affinity of hIFABP to nanodiscs. Analyses of the relaxation and amide exchange data suggested that two minor native-like states existing in both ligand-free and -bound hIFABPs originate from global "breathing" motions, while one minor native-like state comes from local motions. The amide hydrogen exchange data also indicated that helix αII undergoes local unfolding through which ligands can exit from the binding cavity.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Gabriel Zhang Yang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
10
|
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proc Natl Acad Sci U S A 2021; 118:2115113118. [PMID: 34764225 DOI: 10.1073/pnas.2115113118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.
Collapse
|
11
|
Lu Y, Yang D. Conformational exchange of fatty acid binding protein induced by protein-nanodisc interactions. Biophys J 2021; 120:4672-4681. [PMID: 34600898 DOI: 10.1016/j.bpj.2021.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022] Open
Abstract
Fatty acid binding proteins (FABPs) can facilitate the transfer of long-chain fatty acids between intracellular membranes across considerable distances. The transfer process involves fatty acids, their donor membrane and acceptor membrane, and FABPs, implying that potential protein-membrane interactions exist. Despite intensive studies on FABP-membrane interactions, the interaction mode remains elusive, and the protein-membrane association and dissociation rates are inconsistent. In this study, we used nanodiscs (NDs) as mimetic membranes to investigate FABP-membrane interactions. Our NMR experiments showed that human intestinal FABP interacts weakly with both negatively charged and neutral membranes, but it prefers the negatively charged one. Through simultaneous analysis of NMR relaxation in the rotating-frame (R1ρ), relaxation dispersion, chemical exchange saturation transfer, and dark-state exchange saturation transfer data, we estimated the affinity of the protein to negatively charged NDs, the dissociation rate, and apparent association rate. We further showed that the protein in the ND-bound state adopts a conformation different from the native structure and the second helix is very likely involved in interactions with NDs. We also found a membrane-induced FABP conformational state that exists only in the presence of NDs. This state is native-like, different from other conformational states in structure, unbound to NDs, and in dynamic equilibrium with the ND-bound state.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Tiwari VP, Vallurupalli P. A CEST NMR experiment to obtain glycine 1H α chemical shifts in 'invisible' minor states of proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:443-455. [PMID: 32696193 DOI: 10.1007/s10858-020-00336-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) experiments are routinely used to study protein conformational exchange between a 'visible' major state and 'invisible' minor states because they can detect minor states with lifetimes varying from ~ 3 to ~ 100 ms populated to just ~ 0.5%. Consequently several 1H, 15N and 13C CEST experiments have been developed to study exchange and obtain minor state chemical shifts at almost all backbone and sidechain sites in proteins. Conspicuously missing from this extensive set of CEST experiments is a 1H CEST experiment to study exchange at glycine (Gly) 1Hα sites as the existing 1H CEST experiments that have been designed to study dynamics in amide 1H-15N spin systems and methyl 13CH3 groups with three equivalent protons while suppressing 1H-1H NOE induced dips are not suitable for studying exchange in methylene 13CH2 groups with inequivalent protons. Here a Gly 1Hα CEST experiment to obtain the minor state Gly 1Hα chemical shifts is presented. The utility of this experiment is demonstrated on the L99A cavity mutant of T4 Lysozyme (T4L L99A) that undergoes conformational exchange between two compact conformers. The CEST derived minor state Gly 1Hα chemical shifts of T4L L99A are in agreement with those obtained previously using CPMG techniques. The experimental strategy presented here can also be used to obtain methylene proton minor state chemical shifts from protein sidechain and nucleic acid backbone sites.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
13
|
Structural Characterization of an ACP from Thermotoga maritima: Insights into Hyperthermal Adaptation. Int J Mol Sci 2020; 21:ijms21072600. [PMID: 32283632 PMCID: PMC7178038 DOI: 10.3390/ijms21072600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Thermotoga maritima, a deep-branching hyperthermophilic bacterium, expresses an extraordinarily stable Thermotoga maritima acyl carrier protein (Tm-ACP) that functions as a carrier in the fatty acid synthesis system at near-boiling aqueous environments. Here, to understand the hyperthermal adaptation of Tm-ACP, we investigated the structure and dynamics of Tm-ACP by nuclear magnetic resonance (NMR) spectroscopy. The melting temperature of Tm-ACP (101.4 °C) far exceeds that of other ACPs, owing to extensive ionic interactions and tight hydrophobic packing. The D59 residue, which replaces Pro/Ser of other ACPs, mediates ionic clustering between helices III and IV. This creates a wide pocket entrance to facilitate the accommodation of long acyl chains required for hyperthermal adaptation of the T. maritima cell membrane. Tm-ACP is revealed to be the first ACP that harbor an amide proton hyperprotected against hydrogen/deuterium exchange for I15. The hydrophobic interactions mediated by I15 appear to be the key driving forces of the global folding process of Tm-ACP. Our findings provide insights into the structural basis of the hyperthermal adaptation of ACP, which might have allowed T. maritima to survive in hot ancient oceans.
Collapse
|
14
|
Xiao T, Lu Y, Fan JS, Yang D. Ligand Entry into Fatty Acid Binding Protein via Local Unfolding Instead of Gap Widening. Biophys J 2020; 118:396-402. [PMID: 31870540 DOI: 10.1016/j.bpj.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/24/2022] Open
Abstract
Fatty acid binding proteins play an important role in the transportation of fatty acids. Despite intensive studies, how fatty acids enter the protein cavity for binding is still controversial. Here, a gap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the gap is locked by a disulfide bridge. According to its structure determined here by NMR, this variant has no obvious openings as the ligand entrance and the gap cannot be widened by internal dynamics. Nevertheless, it still takes up fatty acids and other ligands. NMR relaxation dispersion, chemical exchange saturation transfer, and hydrogen-deuterium exchange experiments show that the variant exists in a major native state, two minor native-like states, and two locally unfolded states in aqueous solution. Local unfolding of either βB-βD or helix 2 can generate an opening large enough for ligands to enter the protein cavity, but only the fast local unfolding of helix 2 is relevant to the ligand entry process.
Collapse
Affiliation(s)
- Tianshu Xiao
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Vallurupalli P, Tiwari VP, Ghosh S. A Double-Resonance CEST Experiment To Study Multistate Protein Conformational Exchange: An Application to Protein Folding. J Phys Chem Lett 2019; 10:3051-3056. [PMID: 31081645 DOI: 10.1021/acs.jpclett.9b00985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the importance of protein dynamics to function, studying exchange between multiple conformational states remains a challenge because sparsely populated states are invisible to conventional techniques. CEST NMR experiments can detect minor states with lifetimes between 5 and 200 ms populated to a level of just ∼1%. However, CEST often cannot provide the exchange mechanism for processes involving three or more states, leaving the role of the detected minor states unknown. Here a double-resonance CEST experiment to determine the kinetics of multistate exchange is presented. The approach that involves irradiating resonances from two minor states simultaneously is used to study the exchange of T4 lysozyme (T4L) between the dominant native state and two minor states, the unfolded state and a second minor state (B), each populated to only ∼4%. Regular CEST does not provide the folding mechanism, but double-resonance CEST clearly shows that T4L can fold directly without going through B.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District , Hyderabad , Telangana 500107 , India
| | - Ved Prakash Tiwari
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District , Hyderabad , Telangana 500107 , India
| | - Shamasree Ghosh
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District , Hyderabad , Telangana 500107 , India
| |
Collapse
|
16
|
Matsudaira PT, Verma CS. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 143:1-4. [PMID: 30951764 DOI: 10.1016/j.pbiomolbio.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul T Matsudaira
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| | - Chandra S Verma
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| |
Collapse
|
17
|
Biswas R, Singh BK, Dutta D, Das PK, Maiti MK, Basak A, Das AK. Decrypting the oscillating nature of the 4'-phosphopantetheine arm in acyl carrier protein AcpM of Mycobacterium tuberculosis. FEBS Lett 2019; 593:622-633. [PMID: 30847903 DOI: 10.1002/1873-3468.13339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
In Mycobacterium tuberculosis, acyl carrier protein (AcpM)-mediated fatty acid synthase type II is integral for the synthesis of mycolic acids. AcpM, designated as an atypical ACP, comprises of a putative 33 amino acid long C-terminal extension which is distinctive in nature. Here, we aimed at devising an 'easy-to-go' method for the generation of crypto-AcpM loaded with a solvatochromic probe 7-Nitrobenz-2-oxa-1,3-diazol-4-yl, which is linked to the 4'-phosphopantetheine (Ppant) prosthetic group of AcpM. The crypto-AcpM, coupled with fluorescence spectroscopy and molecular dynamics simulation studies, was employed to explore the elusive dynamics of Ppant arm in AcpM. This investigation establishes the role of the flexible C-terminal extension of AcpM in regulating the prosthetic group sequestration ability by modulating the 'Asp-Ser-Leu' motif.
Collapse
Affiliation(s)
- Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Bina Kumari Singh
- School of Biosciences, Indian Institute of Technology, Kharagpur, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Prabir Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Mrinal Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Amit Basak
- School of Biosciences, Indian Institute of Technology, Kharagpur, India.,Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India.,School of Biosciences, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
18
|
Tiwari VP, Pandit S, Vallurupalli P. Exchangeable deuterons introduce artifacts in amide 15N CEST experiments used to study protein conformational exchange. JOURNAL OF BIOMOLECULAR NMR 2019; 73:43-48. [PMID: 30661150 DOI: 10.1007/s10858-018-00223-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Protein molecules sample different conformations in solution and characterizing these conformations is crucial to understanding protein function. 15N CEST experiments are now routinely used to study slow conformational exchange of protein molecules between a 'visible' major state and 'invisible' minor states. These experiments have also been adapted to measure the solvent exchange rates of amide protons by exploiting the one bond deuterium isotope effect on the amide 15N chemical shifts. However at moderately high temperatures (~ 50 °C) that are sometimes required to populate protein minor conformers to levels (~ 1%) that can be detected by CEST experiments solvent H/D exchange can lead to 'dips' in low B115N CEST profiles that can be wrongly assigned to the conformational exchange process being characterized. This is demonstrated in the case of ~ 18 kDa T4 Lysozyme (T4L) at 50 °C and the ~ 11 kDa E. coli hibernation promoting factor (HPF) at 52 °C. This problem is trivially solved by eliminating the exchangeable deuterons in the solvent by using either an external D2O lock or by using a small amount (~ 1-3%) of a molecule like d6-DMSO that does not contain exchangeable deuterons to lock the spectrometer.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Subhendu Pandit
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
19
|
Equilibrium folding dynamics of meACP in water, heavy water, and low concentration of urea. Sci Rep 2017; 7:16156. [PMID: 29170533 PMCID: PMC5700953 DOI: 10.1038/s41598-017-16449-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Many proteins fold in apparent two-state behavior, as partially folded intermediates only transiently accumulate and easily escape detection. Besides a native form and a mainly unfolded form, we captured a partially unfolded form of an acyl carrier protein from Micromonospora echinospora (meACP) in the folding/unfolding equilibrium using chemical exchange saturation transfer NMR experiments. The C-terminal region of the partially unfolded form is mainly folded and the N-terminal is unfolded. Furthermore, to understand how the folding process of meACP is influenced by solvent environments, we compared the folding dynamics of meACP in D2O, H2O and low concentration of urea. As the environment becomes more denaturing from D2O to H2O and then to urea, the unfolded state becomes increasingly populated, and the folding rate decreases. Adding a small amount of urea, which does not change solvent viscosity, has little effects on the unfolding rates, while changing H2O to D2O reduces the unfolding rates possibly due to the increase of solvent viscosity. The quantified solvent effects on the protein folding Gibbs energy and activation energy suggest that the transition state of folding may have a similar structure to the native state of the protein.
Collapse
|
20
|
Harden BJ, Frueh DP. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions. Chembiochem 2017; 18:629-632. [PMID: 28120469 PMCID: PMC5380562 DOI: 10.1002/cbic.201700030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/08/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) employ multiple domains separated by linker regions to incorporate substrates into natural products. During synthesis, substrates are covalently tethered to carrier proteins that translocate between catalytic partner domains. The molecular parameters that govern translocation and associated linker remodeling remain unknown. Here, we used NMR to characterize the structure, dynamics, and invisible states of a peptidyl carrier protein flanked by its linkers. We showed that the N-terminal linker stabilizes and interacts with the protein core while modulating dynamics at specific sites involved in post-translational modifications and/or domain interactions. The results detail the molecular communication between peptidyl carrier proteins and their linkers and could guide efforts in engineering NRPSs to obtain new pharmaceuticals.
Collapse
Affiliation(s)
- Bradley J. Harden
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205
| | - Dominique P. Frueh
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205
| |
Collapse
|
21
|
Vallurupalli P, Sekhar A, Yuwen T, Kay LE. Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. JOURNAL OF BIOMOLECULAR NMR 2017; 67:243-271. [PMID: 28317074 DOI: 10.1007/s10858-017-0099-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/20/2017] [Indexed: 05/25/2023]
Abstract
Although Chemical Exchange Saturation Transfer (CEST) type NMR experiments have been used to study chemical exchange processes in molecules since the early 1960s, there has been renewed interest in the past several years in using this approach to study biomolecular conformational dynamics. The methodology is particularly powerful for the study of sparsely populated, transiently formed conformers that are recalcitrant to investigation using traditional biophysical tools, and it is complementary to relaxation dispersion and magnetization transfer experiments that have traditionally been used to study chemical exchange processes. Here we discuss the concepts behind the CEST experiment, focusing on practical aspects as well, we review some of the pulse sequences that have been developed to characterize protein and RNA conformational dynamics, and we discuss a number of examples where the CEST methodology has provided important insights into the role of dynamics in biomolecular function.
Collapse
Affiliation(s)
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - Tairan Yuwen
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, ON, Canada.
- Hospital for Sick Children, Program in Molecular Structure and Function, Toronto, ON, Canada.
| |
Collapse
|
22
|
Coexistence of multiple minor states of fatty acid binding protein and their functional relevance. Sci Rep 2016; 6:34171. [PMID: 27677899 PMCID: PMC5039767 DOI: 10.1038/srep34171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
Proteins are dynamic over a wide range of timescales, but determining the number of distinct dynamic processes and identifying functionally relevant dynamics are still challenging. Here we present the study on human intestinal fatty acid binding protein (hIFABP) using a novel analysis of 15N relaxation dispersion (RD) and chemical shift saturation transfer (CEST) experiments. Through combined analysis of the two types of experiments, we found that hIFABP exists in a four-state equilibrium in which three minor states interconvert directly with the major state. According to conversion rates from the major “closed” state to minor states, these minor states are irrelevant to the function of fatty acid transport. Based on chemical shifts of the minor states which could not be determined from RD data alone but were extracted from a combined analysis of RD and CEST data, we found that all the minor states are native-like. This conclusion is further supported by hydrogen-deuterium exchange experiments. Direct conversions between the native state and native-like intermediate states may suggest parallel multitrack unfolding/folding pathways of hIFABP. Moreover, hydrogen-deuterium exchange data indicate the existence of another locally unfolded minor state that is relevant to the fatty acid entry process.
Collapse
|
23
|
Xiao T, Fan JS, Zhou H, Lin Q, Yang D. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tianshu Xiao
- Department of Biological Sciences; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Jing-song Fan
- Department of Biological Sciences; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Hu Zhou
- Department of Biological Sciences; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Qingsong Lin
- Department of Biological Sciences; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| | - Daiwen Yang
- Department of Biological Sciences; National University of Singapore; 14 Science Drive 4 Singapore 117543 Singapore
| |
Collapse
|
24
|
Liu W, Zhang J, Fan JS, Tria G, Grüber G, Yang D. A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein. Biophys J 2016; 110:1943-56. [PMID: 27166803 PMCID: PMC4939551 DOI: 10.1016/j.bpj.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022] Open
Abstract
Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jingfeng Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Giancarlo Tria
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
25
|
Xiao T, Fan JS, Zhou H, Lin Q, Yang D. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding. Angew Chem Int Ed Engl 2016; 55:6869-72. [PMID: 27105780 DOI: 10.1002/anie.201601326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Indexed: 11/08/2022]
Abstract
Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the β-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate.
Collapse
Affiliation(s)
- Tianshu Xiao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hu Zhou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
26
|
Goodrich AC, Harden BJ, Frueh DP. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. J Am Chem Soc 2015; 137:12100-9. [PMID: 26334259 DOI: 10.1021/jacs.5b07772] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are microbial enzymes that produce a wealth of important natural products by condensing substrates in an assembly line manner. The proper sequence of substrates is obtained by tethering them to phosphopantetheinyl arms of holo carrier proteins (CPs) via a thioester bond. CPs in holo and substrate-loaded forms visit NRPS catalytic domains in a series of transient interactions. A lack of structural information on substrate-loaded carrier proteins has hindered our understanding of NRPS synthesis. Here, we present the first structure of an NRPS aryl carrier protein loaded with its substrate via a native thioester bond, together with the structure of its holo form. We also present the first quantification of NRPS CP backbone dynamics. Our results indicate that prosthetic moieties in both holo and loaded forms are in contact with the protein core, but they also sample states in which they are disordered and extend in solution. We observe that substrate loading induces a large conformational change in the phosphopantetheinyl arm, thereby modulating surfaces accessible for binding to other domains. Our results are discussed in the context of NRPS domain interactions.
Collapse
Affiliation(s)
- Andrew C Goodrich
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Bradley J Harden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|